首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
可逆固体氧化物电池氢电极的制备及性能
作者:吴佳佳 陈希 盛中一 王瑶 刘通 
单位:武汉大学动力与机械学院 水力机械过渡过程教育部重点实验室 武汉 430072 
关键词:可逆固体氧化物电池 氢电极 相转化 流延 浓差极化 
分类号:TQ174;TM911
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.15
摘要:

 通过调整相转化–流延过程中石墨浆料和氧化镍–氧化钇稳定氧化锆浆料的位置,获得单层直孔和双层直孔/海绵状孔两种结构氢电极,并结合浸渍涂敷、丝网印刷、高温烧结等技术制成氢电极支撑固体氧化物电池。当氢电极和氧电极分别暴露于67%CO2–33%CO (体积分数)和空气时,700 ℃、开路条件下2种电池的电极极化电阻分别为1.03 (单层)和1.60 Ω•cm2 (双层);且前者的电解性能和输出性能均优于后者,这可能的原因是单层结构氢电极优异的气体渗透性能有利于CO2–CO混合气在电极内的传输,有效地降低了电池的气体传输电阻。

 Two hydrogen electrodes were obtained via the change of the positions of graphite and NiO–yttria-stablized-zirconia slurries in a phase-inversion co-tape casting process. One hydrogen electrode is a single-layer electrode with larger straight pores, and another is a straight pores/sponge-like pores dual-layer electrode, and the corresponding hydrogen electrode supported solid oxide cells are prepared by combining dip-coating, screen-printing and high temperature sintering method. When the hydrogen electrode and the oxygen electrode of reversible solid oxide cells were exposed to 67%CO2–33%CO (volume fraction) and ambient air, respectively, the electrode polarization resistance for the single-layer electrode supported cell is 1.03 Ω•cm2, which is lower than that for the dual-layer electrode supported cell (i.e., 1.60 Ω•cm2). In addition, in both solid oxide fuel cell and solid oxide electrolysis cell modes, the electrochemical properties for the single-layer electrode supported cell is also better than the dual-layer electrode supported cell. This could be attributed to the greater gas permeability and lower diffusion resistance of CO2–CO in the single-layer electrode.

基金项目:
国家自然科学基金(51602228);中国博士后基金(2016M590712, 2017T100575)资助。
作者简介:
参考文献:

 [1] MARINA O A, PEDERSON L R, WILLIAMS M C, et al. Electrode

performance in reversible solid oxide fuel cells[J]. J Electrochem Soc,
2007, 154(5): B452–B459.
[2] RUIZ-MORALES J C, MARRERO-LOPEZ D, CANALES-VAZQUEZ
J, et al. Symmetric and reversible solid oxide fuel cells[J]. RSC Adv,
2011, 1(8): 1403–1414.
[3] WANG Y, LIU T, LEI L B, et al. High temperature solid oxide
H2O/CO2 co-electrolysis for syngas production[J]. Fuel Process
Technol, 2017, 161:248–258.
[4] BI L, BOULFRAD S, TRAVERSA E. Steam electrolysis by solid
oxide electrolysis cells (SOECs) with proton-conducting oxides[J].
Chem Soc Rev, 2014, 43(24): 8255–8270.
[5] YANG T, WANG J, CHEN Y, et al. A combined variable-temperature
neutron diffraction and thermogravimetric analysis study on a
promising oxygen electrode, SrCo0.9Nb0.1O3–δ, for reversible solid
oxide fuel cells[J]. ACS Appl Mater Interfaces, 2017, 9(40):
34855–34864.
[6] HOSOI K, HAGIWARA H, IDA S, et al. La0.8Sr0.2FeO3–δ as fuel
electrode for solid oxide reversible cells using LaGaO3–δ based oxide
electrolyte[J]. J Phys Chem C, 2016, 120(29): 16110–16117.
[7] SUMI H, YAMAGUCHI T, HAMAMOTO K, et al. Effects of anode
microstructure on mechanical and electrochemical properties for
anode-supported microtubular solid oxide fuel cells[J]. J Am Ceram
Soc, 2013, 96(11): 3584–3588.
[8] LIU R Z, ZHAO C H, LI J L, et al. Testing of a cathode fabricated by
painting with a brush pen for anode-supported tubular solid oxide fuel
cells[J]. J Power Sources, 2010, 195(2): 541–545.
[9] NI M, LEUNG M K H, LEUNG D C, A modeling study on
concentration overpotentials of a reversible solid oxide fuel cell[J]. J
Power Sources, 2006, 163(1): 460–466.
[10] SUZUKI T, YAMAGUCHI T, FUJISHIRO Y, et al. Improvement of
SOFC performance using a microtubular, anode-supported SOFC[J]. J
Electrochem Soc, 2006, 153(5): A925–A928.
[11] SUZUKI T, HASAN Z, FUNAHASHI Y, et al. Impact of anode
microstructure on solid oxide fuel cells[J]. Science, 2009, 325(5942):
852–855.
[12] LAGUNA-BERCERO M A, HANIFI A R, MENAND L, et al. The
effect of pore-former morphology on the electrochemical performance
of solid oxide fuel cells under combined fuel cell and electrolysis
modes[J]. Electrochim Acta, 2018, 268: 195–201.
[13] 骆婷, 史坚, 王绍荣, 等. 共流延法制备固体氧化物燃料电池阳极
的优化[J]. 无机材料学报, 2014, 29(2): 203–208.
LUO Ting, SHI Jian, WANG Shaorong, et al. J Inorg Mater(in
Chinese), 2014, 29(2): 203–208.
[14] LIN J, CHEN L, LIU T, et al. The beneficial effects of straight open
large pores in the support on steam electrolysis performance of
electrode-supported solid oxide electrolysis cell[J]. J Power Sources,
2018, 374: 175–180.
[15] LIU T, LIN J, LIU T, et al. Tailoring the pore structure of cathode
supports for improving the electrochemical performance of solid oxide
fuel cells[J]. J Electroceram, 2018, 40(2): 138–143.
[16] HUANG H, LIN J, WANG Y, et al. Facile one-step forming of NiO
and yttrium-stabilized zirconia composite anodes with straight open
pores for planar solid oxide fuel cell using phase-inversion tape casting
method[J]. J Power Sources, 2015, 274: 1114–1117.
[17] 张玉月, 蔺杰, 苗国栓, 等. 固体氧化物燃料电池阳极的相转化流
延制备和电化学性能研究[J]. 无机材料学报, 2015, 30(12):
1291–1294.
ZHANG Yuyue, LIN Jie, MIAO Guoshuan, et al. J Inorg Mater(in
Chinese), 2015, 30(12): 1291–1294.
[18] LIU T, CHEN X, WU J, et al. A highly-performed, dual-layered
cathode supported solid oxide electrolysis cell for efficient CO2
electrolysis fabricated by phase inversion co-tape casting method[J]. J
Electrochem Soc, 2017, 164(12): F1130–F1135.
[19] LIU T, WANG Y, ZHANG Y, et al. Steam electrolysis in a solid oxide
electrolysis cell fabricated by the phase-inversion tape casting
method[J]. Electrochem Commun, 2015, 61: 106–109.
[20] LIU T, REN C, ZHANG Y, et al. Solvent effects on the morphology
and performance of the anode substrates for solid oxide fuel cells[J]. J
Power Sources, 2017, 363: 304–310.
[21] SHI N, SU F, HUAN D M, et al. Performance and DRT analysis of
P-SOFCs fabricated using new phase inversion combined tape casting
technology[J]. J Mater Chem A, 2017, 5(37): 19664–19671.
[22] SUN H B, CHEN Y, YAN R Q, et al. Anode-supported solid oxide
fuel cells based on Sm0.2Ce0.8O1.9 electrolyte fabricated by a
phase-inversion and drop-coating process[J]. Int J Hydrogen Energy,
2016, 41(25): 10907–10913.
[23] LI Y H, LI P, HU B B, et al. A nanostructured ceramic fuel electrode
for efficient CO2/H2O electrolysis without safe gas[J]. J Mater Chem A,
2016, 4(23): 9236–9243.
[24] WANG Y, ZHANG H, CHEN F L, et al. Electrochemical characteristics
of nano-structured PrBaCo2O5+x cathodes fabricated with ion
impregnation process[J]. J Power Sources, 2012, 203(1): 34–41.
[25] 余良浩, 王晓晴, 林彬, 等. 新型复合阴极Sr0.95Ti0.05Co0.95O3–δ–
Sm0.2Ce0.8O1.9在中低温固体氧化物燃料电池中的性能[J]. 硅酸盐学
报, 2015, 43(7): 852–857.
Yu Lianghao, Wang Xiaoqing, Lin Bin, et al. J Chin Ceram Soc, 2015,
43(7): 852–857.
[26] CHEN L, YAO M T, XIA C R, Anode substrate with continuous
porosity gradient for tubular solid oxide fuel cells[J]. Electrochem
Commun, 2014, 38(1): 114–116.
[27] SHI Y, LUO Y, CAI N, et al. Experimental characterization and
modeling of the electrochemical reduction of CO2 in solid oxide
electrolysis cells[J]. Electrochim Acta, 2013, 88: 644–653.
[28] KLEIMINGER L, LI T, LI K, et al. Syngas (CO–H2) production using
high temperature micro-tubular solid oxide electrolysers[J].
Electrochim Acta, 2015, 179: 565–577.
[29] SINGH V, MUROYAMA H, MATSUI T, et al. Performance and
stability of solid oxide electrolysis cell for CO2 reduction under various
operating conditions[J]. Electrochemistry, 2014, 82(10): 839–844.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com