首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
乙二胺四乙酸添加量对三维棒花状钒酸铋形貌及光催化活性的影响
作者:郭鹏瑶1 王敏2 胡筱敏1 孙明志1 
单位:1. 东北大学资源与土木工程学院 沈阳 110819 2. 东北大学机械工程与自动化学院 沈阳 110819 
关键词:光催化 钒酸铋 溶剂法 乙二胺四乙酸 三维棒花状 
分类号:0643
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.18
摘要:

 以NH4VO3和Bi(NO3)3•5H2O为原料,采用乙二醇溶剂热法,通过添加乙二胺四乙酸(EDTA)制备了3D结构的棒花状BiVO4光催化剂,研究了EDTA投加量对BiVO4形貌和性能的影响,分析了合成条件下BiVO4 3D棒花状形貌形成的机理,以甲基橙为模拟废水,考察了其光催化活性。结果表明:添加EDTA后对样品形貌改变较大,由棒状转变为3D棒花状,且(040)、(150)、(240)、(042)、(202)晶面特征峰明显,比表面积增大、光吸收边发生红移;当EDTA添加量为0.03 g时,制备的样品对甲基橙溶液的降解率最高,50 min达到94%左右,对苯酚溶液光照120 min的降解率可达到92%左右,较未添加EDTA时显著提高。

 BiVO4 powders with three-dimensional (3D) rodflower-like structure were prepared by an ethylene glycol solvent thermal method with NH4VO3 and Bi(NO3)3•5H2O as raw materials. The effect of ethylene diamine tetraacetic acid (EDTA) dosage on the morphology and properties of BiVO4 powders and the corresponding mechanism were investigated. The photocatalytic activity was evaluated via the measurement of the degradation of methyl orange (MO) solution under visible light irradiation. The results show that the EDTA has a dominat effect on the morphology. The morphology of BiVO4 can be changed from rod-like structure to 3D rod flowers-like structure after the EDTA addition. The intensity of (040), (150), (240), (042), (202) diffraction peaks increases after EDTA addition. The specific surface area increases and the optical absorption edge becomes red shift. BiVO4 prepared with the EDTA addition of 3.0g has an optimal photocatalytic effect. The degradation rate of MO with the EDTA addition is about 94% after 50 min under visible light irradiation, and the degradation rate of phenol with the EDTA addition is around 92% after 120 min under visible light irradiation, which both are greater than those without any EDTA addition.

基金项目:
国家自然科学基金青年基金(21207093)。
作者简介:
参考文献:
[1] DENG F, LIU Y, LUO X B, et al. Sol-hydrothermal synthesis of
inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite
and its preferential photocatalytic degradation towards target
contaminant[J]. J Hazard Mater, 2014, 278: 108–115.
[2] CHENG L J, KANG Y, TONG F. Effect of preparation conditions on
characteristics of hollow TiO2 fibers fabricated by chemical deposition
and template method[J]. Appl Surf Sci, 2012, 263: 223–229.
[3] ZHANG J, Cu H, WANG B, et al. Fly ash cenospheres supported
visible-light-driven BiVO4 photocatalyst: Synthesis, characterization
and photocatalytic application[J]. Chem Eng J, 2013, 223: 737–746.
[4] LI Y K, DONG S Y, WANG Y F, et al. Reduced graphene oxide on a
dumbbell-shaped BiVO4 photocatalyst for an augmented natural
sunlight photocatalytic activity[J]. J Mol Catal A: Chem, 2014, 387:
138–146.
[5] WANG M, ZHENG H Y, LIU Q, et al. , High performance B doped
BiVO4 photocatalyst with visible light response by citric acid complex
method[J]. Spectrochim Acta Part A: Mol Biomol Spect , 2013, 114:
74–79.
[6] 戈磊, 张宪华. 微乳液法合成新型可见光催化剂BiVO4及光催化性
能研究[J]. 无机材料学报, 2009(3): 453–456.
GE Lei, ZHANG Xianhua. J Inorg Mater(in Chinese), 2009(3):
433–456.
[7] ZHANG L, CHEN D R, JIAO X L. Monoclinic structured BiVO4
nanosheets: Hydrothermal preparation, formation mechanism, and
coloristic and photocatalytic properties[J]. J Phys Chem B, 2006, 110:
2668–2673.
[8] ZHOU L, WANG W Z, ZHANG L S, et al. Single-crystalline BiVO4
microtubes with square cross-sections: Microstructure, growth
mechanism, and photocatalytic property[J]. J Phys Chem C, 2007, 111:
13659–13664.
[9] 郭佳, 朱毅, 张渊明, 等. 不同结构形貌BiVO4的水热制备及可见
光催化性能[J], 无机材料学报, 2012, 27(1): 26–32.
GUO Jia, ZHU Yi, ZHANG Yuanming, et al. J Inorg Mater(in
Chinese), 2012, 27(1): 26–32.
[10] YIN W, WANG W, ZHOU L, et al. CTAB-assisted synthesis of
monoclinic BiVO4 photocatalyst and its highly efficient degradation of
organic dye under visible-light irradiation[J]. J Hazard Mater, 2010,
173(1/2/3): 194−199.
[11] LI G, ZHANG D, YU J C. Ordered mesoporous BiVO4 through
nanocasting: A superior visible light-driven photocatalyst[J]. Chem
Mater, 2008, 20(12): 3983–3992.
[12] JIANG H Y, DAI H X, MENG X, et al. Porous olive-like BiVO4:
Alcoho-hydrothermal preparation and excellent visible-light-driven
photocatalytic performance for the degradation of phenol[J]. Appl
Catal B: Envi, 2011, 105(3–4): 326–334
[13] ZHOU L, WANG W, XU H. Controllable synthesis of three-dimensional
well-defined BiVO4 mesocrystals via a facile additive-free aqueous
strategy[J]. Cryst Grow Des, 2008, 8(2): 728–733
[14] SUN S M, WANG W Z, ZHOU L, et al. Efficient methylene blue
removal over hydrothermally synthesized starlike BiVO4[J]. Ind Eng
Chem Res, 2008, 48: 1735–1739.
[15] SUN W T, XIE M Z, JING L Q, et al. Synthesis of large surface area
nano-sized BiVO4 by an EDTA-modified hydrothermal process and its
enhanced visible photocatalytic activity[J]. J Solid State Chem, 2011,
184: 3050–3054.
[16] ZHU Z F, DU J, LI J Q, et al. An EDTA-assisted hydrothermal
synthesis of BiVO4 hollow microspheres and their evolution into
nanocages[J]. Ceram Int, 2012, 38: 4827–4834.
[17] JORGE M M, CHRISTOPHR C J, GRACIELA C, et al.
TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA:
Comparison of different commercial photocatalysts and studies by time
resolved microwave conductivity[J]. Appl Catal B: Envi, 2014, 144:
189–195.
[18] 陈渊, 周科朝, 黄苏萍, 等. BiVO4纳米片的水热合成及可见光催化
性能[J]. 中国有色金属学报, 2011, 21(7): 1570–1579.
CHEN Yuan, ZHOU Kechao, HUANG Suping, et al. Chin J
Nonferrous Met (in Chinese), 2011, 21(7): 1570–1579.
[19] WANG M, CHE Y S, NIU C, et al. Effective visible ligh-active boron
and europium co-doped BiVO4 synthesized by sol–gel method for
photodegradion of methyl orange[J]. J Hazard Mater, 2013, 262: 447–455.
[20] 刘国聪, 金真, 张喜斌, 等. 可见光响应催化剂BiVO4六角形微米
棒的水热合成[J]. 无机材料学报, 2011, 27(6) : 1059–1064.
LIU Guocong, JIN Zhen, ZHANG Xibin, et al. J Inorg Mater(in
Chinese), 2011, 27 (6): 1059–1064.
[21] LI J Q, ZHOU J, HAO H J, et al. Silver-modified specific (040) facet
of BiVO4 with enhanced photoelectrochemical performance[J]. Mater
Lett, 2016, 170: 163–166.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com