首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
特的力学性能主要与Al—O键的键长有关。
作者:王鹏1 林雪玲1 潘凤春1 林龙2 王旭明1 
单位:1. 宁夏大学物理与电子电气工程学院 宁夏 银川750021  2. 河南理工大学材料科学与工程学院 河南 焦作 454000 
关键词:第一性原理 静水压力 高岭石 电子结构 力学性能 
分类号:O472
出版年,卷(期):页码:2018,46(12):0-0
DOI:10.14062/j.issn.0454-5648.2018.12.19
摘要:

 基于密度泛函理论的第一性原理方法研究了不同静水压力下高岭石的电子结构和力学性能。结果表明:高岭石的禁带宽度随着压力的增加逐步增大,其原因在于压力下体系的导带底向高能区移动;压力下高岭石片层之间的距离变小以及Si—O键和Al—O键键长变短导致了高岭石超晶胞的体积减小,同时高岭石晶体由三斜晶系向单斜晶系转变,发生了塑性形变;高岭石晶体的刚性和抵御塑性变形的能力随着压力的增加而增大,在0.6 GPa时体系的Poisson比最小且Al—O键键长达到了最小,表明此压力下高岭石晶体的横向变形最小,结构最为稳定,0.6 GPa压力下高岭石独特的力学性能主要与Al—O键的键长有关。

 The electronic structures and mechanical properties of Kaoline at different hydrostatic pressures were simulated by the first-principles calculation based on the density functional theory. The simulated results indicate that the band-gap of Kaoline increases with the increase of pressure because the bottom of conduction band shifts up at a pressure. The decreased distance between Kaoline lamellas and the shortened bond lengths of Si—O and Al—O both result in the reductive volume of the Kaoline supercell. Also, the crystal structure translates from triclinic system to monoclinic one, leading to the plastic deformation. The rigidity and ability to resist the plastic deformation increase as the pressure increases. The Poisson ratio and the Al—O length of the system become minimum at a pressure of 0.6 GPa, indicating the minimum transverse deformation and the most stable structure. The unique mechanical properties of Kaoline at such a pressure (i.e., 0.6 GPa) are mainly related to the Al—O bond length.

基金项目:
宁夏自然科学基金(NZ17039);国家自然科学基金(11764032, 11762019,11662017);河南省自然科学基金(182300410288); 河南省科技厅科技攻关项目(182102210305)资助。
作者简介:
参考文献:

 [1] LARROYD F, PETTER C O, SAMPAIO C H. Purification of north

Brazilian kaolin by selective flocculation[J]. Miner Eng, 2002, 15(12):
1191–1192.
[2] FU L J, YANG H M, TANG A D, et al. Engineering a tubular
mesoporous silica nanocontainer with well-preserved clay shell from
natural halloysite[J]. Nano Res, 2017, 10(8): 2782–2799.
[3] ZHANG Y, TANG A D, YANG H M, et al. Applications and
interfaces of halloysite nanocomposites[J]. App Clay Sci, 2016, 119(1):
8–17.
[4] 马鸿文, 申继学, 杨静, 等. 钾霞石酸解–水热晶化纳米高岭石: 反
应与表征[J]. 硅酸盐学报, 2017, 45(5): 1–8.
MA Hongwen, SHEN Jixue, Yang Jing, et al. J Chin Ceram Soc, 2017,
45(5): 1–8.
[5] 左小超, 刘钦甫, 姬景超, 等. 脂肪酸/高岭石插层复合物的制备及
结构模型[J]. 硅酸盐学报, 2015, 43(9): 1294–1299.
ZUO Xiaochao, Liu Qinfu, JI Jingchao, et al. J Chin Ceram Soc, 2015,
43(9): 1294–1299.
[6] BARBHUIYA S, CHOW P L, MEMON S. Microstructure, hydration
and nanomechanical properties of concrete containing metakaolin[J].
Constr Build Mater, 2015, 95: 696–702.
[7] SIDDIQUE R, KLAUS J. Influence of metakaolin on the properties of
mortar and concrete: A review[J]. App Clay Sci, 2009, 43(3): 392–400.
[8] RASHAD A M. Metakaolin as cementitious material: History, scours,
production and compositon–A comprehensive overview[J]. Const
Build Mater, 2013, 41(2): 303–318.
[9] ZHANG Y S, SUN W. Semi-empirical AM1 calculations on
6-memebered aluminosilicate rings model: Implications for dissolution
process of metakaoline in alkaline solutions[J]. J Mater Sci, 2007,
42(9): 3015–3023.
[10] DANIEL T, TOMÁŠ B, ALI Z. Assessment of ten DFT methods in
predicting structures of sheet silicates: Important of dispersion
corrections[J]. J Chem Phys, 2012, 137(11): 114105.
[11] PERDEW J P, WANG Y. Accurate and simple analytic representation
of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23):
13244–13249.
[12] ZHOU S, XU Q, POTZGER K, et al. Room-temperature ferromagnetism in
carbon-implanted ZnO[J]. Appl Phys Lett, 2008, 93(23): 232507.
[13] PACK J D, MONKHORST H J. Special points for Brillouin-zone
integrations–A reply[J]. Phys Rev B, 1977, 16(4): 1748–1749.
[14] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic
properties of superhard IrN2 and IrN3 from first principles[J]. Phys Rev
B, 2007, 76(5): 054115.
[15] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli
of polycrystals with monoclinic symmetry[J]. J Appl Phys, 1980, 51(3):
1520–1524.
[16] HILL B R. The elastic behaviour of a crystalline aggregate[J]. Proc
Phys Soc, 1952, A65(5): 349–354.
[17] GAO F M. Hardness of cubic solid solutions[J]. Sci Rep, 2017, 7:
40276.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com