首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
多孔硼化锆–碳化硅–石墨超高温陶瓷的抗热冲击性能
作者:王帅1 金鑫鑫1 董丽敏1 2 吴可嘉1 陈乐1 
单位:1. 哈尔滨理工大学材料科学与工程学院 哈尔滨 150040  2. 哈尔滨理工大学工程电介质及其应用教育部重点实验室 哈尔滨 150080 
关键词:硼化锆–碳化硅–石墨 力学性能 热冲击损伤抗性 热冲击断裂抗性 
分类号:TQ174
出版年,卷(期):页码:2018,46(6):0-0
DOI:10.14062/j.issn.0454-5648.2018.06.03
摘要:

 为了改善ZrB2基超高温陶瓷的热冲击损伤抗性,采用冷等静压–无压烧结法在ZrB2–SiC–Graphite(ZSG)材料体系中引入孔隙制备ZSG多孔陶瓷,同时利用热压法制备了ZSG致密陶瓷作为对比材料,研究了2种ZSG陶瓷材料的力学性能,并探究了孔的引入对ZSG复合陶瓷热冲击性能的影响。结果表明:孔的引入降低了ZSG陶瓷的抗弯强度(由230.04 MPa降为98.12 MPa)和断裂韧性(由4.69 MPa•m1/2降为4.27 MPa•m1/2),但孔的引入大大提升了ZSG陶瓷的临界裂纹尺寸(由132 μm增长为602 μm)。孔的引入明显提高了材料的残余强度保持率(由54%增长为84%),即改善了ZrB2基陶瓷的热冲击损伤抗性。与其它材料体系不同的是,孔的引入还提高了ZSG复合陶瓷的临界温差,说明孔对ZSG复合陶瓷的热冲击断裂抗性和损伤抗性具有同时增强的效果。

 Pores were introduced into porous ZrB2–SiC–Graphite (ZSG) ceramics by a cold isostatic pressing pressureless sintering method in order to improve the thermal shock damage resistance of ZrB2 based ultrahigh-temperature ceramics. Also, dense ZSG ceramics were prepared by a hot pressing method. The mechanical properties of these two kinds of ZSG ceramic materials were compared. The effect of pores introduction on the thermal shock resistance of ZSG ceramic was also investigated. The result shows that the introduction of pores reduces the flexural strength (i.e., from 230.04 to 98.12 MPa) and fracture toughness (i.e., from 4.69 to 4.27 MPa•m1/2) of ZSG ceramics. However, the introduction of pores greatly increases the critical crack size (i.e., from 132 to 602 μm) of ZSG ceramic. Moreover, the pores introduction improves the residual strength retention rate (i.e., from 54% to 84%), which increases the thermal shock damage resistance of ZrB2 based ceramics. Unlike other materials, pores also increase the critical temperature difference of ZSG ceramic. The pores introduction can improve the thermal shock fracture resistance and damage resistance of ZSG ceramic simultaneously.

基金项目:
国家青年科学基金(51602082)和黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT–2017083)资助。
作者简介:
参考文献:

 [1] CHENG Y H, QI Y, HU P, et al. ZrB2–SiC–G composite prepared by spark plasma sintering of in-situ synthesized ZrB2–SiC–G composite powders[J]. J Am Ceram Soc, 2016, 99(6): 2131–2137.

[2] OUYANG G, RAY P K, KRAMER M J, et al. Effect of AlN substitutions on the oxidation behavior of ZrB2–SiC composites at 1 600 ℃[J]. J Am Ceram Soc, 2016, 99(10): 3389–3397.
[3] JIN X X, HE R, ZHANG X, et al. Ablation behavior of ZrB2–SiC sharp leading edges[J]. J Alloys Compounds, 2013, 566(8): 125–130.
[4] 左凤娟, 成来飞, 张立同. ZrB2–SiC多层陶瓷的抗氧化性[J]. 硅酸盐学报, 2012, 40(8): 1174–1178.
ZUO Fengjun, CHENG Laifei, ZHANG Litong. J Chin Ceram Soc, 2012, 40(8): 1174–1178.
[5] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G. Thermal shock resistance and fracture behavior of ZrB2-based fibrous monolith ceramics[J]. J Am Ceram Soc, 2010, 92(1): 161–166.
[6] WEI C C, LIU X C, NIU J Y, et al. High temperature mechanical properties of laminated ZrB2–SiC based ceramics[J]. Ceram Int, 2016, 42(16): 18148–18153.
[7] 宋建荣, 李俊国, 沈强, 等. ZrB2–ZrO2陶瓷的抗热震和抗氧化性 能[J]. 硅酸盐学报, 2008, 36(5): 93–97.
SONG Jianrong, LI Junguo, SHEN Qiang, et al. J Chin Ceram Soc, 2008, 36(5): 93–97.
[8] CHEN X, PENG X, WEI Z, et al. Repeated thermalshock behavior of ZrB2–SiC–graphite composite under prestress[J]. Ceram Int, 2016, 42(16).
[9] 周长灵, 程之强, 刘福田, 等. 硼化锆基碳化硅复相陶瓷[J]. 硅酸盐学报, 2006, 34(8): 1017–1021.
ZHOU Changling, CHENG Zhiqiang, LIU Futian, et al. J Chin Ceram Soc, 2006, 34(8): 1017–1021.
[10] LIU X C, WEI C C, LIU F, et al. R–curve behavior of laminated ZrB2–SiC/Graphite ceramics in two different directions[J]. Ceram Int, 2017, 43(8): 6612–6617.
[11] JIN H, MENG S, XU C, et al. A novel method to evaluate the thermal shock behavior of ZrB2–SiC–graphite composites under alternating complex thermal stress environments[J]. Ceram Int, 2016, 42(14): 16354–16358.
[12] WEI C C, YU C X, LIU X C, et al. Oxidation resistance and strength retention of laminated G/ZrB2–SiC ceramics[J]. Ceram Int, 2017, 43(16): 14493–14498.
[13] WANG R, LI D, XING A, et al. Temperature dependent fracture strength model for the laminated ZrB2 based composites[J]. Compos Struct, 2017, 162.
[14] JIN X X, ZHANG X, HAN J, et al. Thermal shock behavior of porous ZrB2–SiC ceramics[J]. Mat Sci Eng A–Stryct, 2013, 588(12): 175–180.
[15] WANG Z, WANG S, ZHANG X, et al. Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2–SiC matrix ultrahigh temperature ceramics[J]. J Alloy Compd, 2009, 484(1): 390–394.
[16] HOU Y, HU P, ZHANG X, et al. Effects of graphite flake diameter on mechanical properties and thermal shock behavior of ZrB2–nanoSiC–graphite ceramics[J]. Int J Refract Met H, 2013, 41: 133–137.
[17] HU P, WANG Z, SUN X. Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–G composite[J]. Int J Refract Met H, 2010, 28(2): 280–285.
[18] WEI C, YE C. Mechanical properties and thermal shock behavior of bionic laminated ZrB2–SiC–G ceramics[J]. Int J Refract Met H, 2015, 51: 233–238.
[19] COBLE R L, KINGERY W D. Effect of porosity on thermal stress fracture[J]. J Am Ceram, 1955, 38(1): 33–37.
[20] CHEN Y, LUC J V, ROBERT J S, et al. The effect of porosity in thermal shock[J]. J Mater Sci, 2008, 43(12): 4099–4106. 
[21] JIN X X, DONG L M, XU H Y, et al. Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2–SiC ceramics[J]. Ceram Int, 2016, 42(7): 9051–9057.
[22] SHE J H, YANG J F, OHJI T. Thermal shock resistance of porous silicon nitride ceramics[J]. J Mater Sci Lett, 2003, 22(5): 331–333.
[23] SHE J, OHJI T, DENG Z. Thermal shock behavior of porous silicon carbide ceramics[J]. J Am Ceram, 2010, 85(8): 2125–2127.
[24] COBLE R L, KINGERY W D. Effect of porosity on physical properties of sintered alumina[J]. J Am Ceram, 1956, 39(11): 377–385.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com