首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硬脂酸表面改性对聚氨酯发泡法制备ZrO2多孔陶瓷性能的影响
作者:唐欣悦1 张在娟2 霍文龙2 张笑妍2 刘静静2 闫姝2 王修慧1 杨金龙1 2 
单位:1. 大连交通大学材料科学与工程学院 辽宁 大连 116021  2. 清华大学材料学院 新型陶瓷与精细工艺国家重点实验室 北京 100084 
关键词:改性 聚氨酯 氧化锆 多孔陶瓷 
分类号:TQ172.75
出版年,卷(期):页码:2018,46(6):0-0
DOI:10.14062/j.issn.0454-5648.2018.06.04
摘要:

 通过聚氨酯发泡法制备了ZrO2多孔陶瓷,研究了ZrO2粉体表面改性对多孔陶瓷综合性能的影响。结果表明:ZrO2粉体表面进行硬脂酸改性不仅可以阻止颗粒团聚,有效降低浆料黏度,并显著提高粉体表面的亲油性,增加粉体与有机聚氨酯原料的相容性,还可增加粉体与聚氨酯官能团的相互作用,促进聚氨酯交联网络形成,进而解决坯体及多孔陶瓷的分层问题,提高ZrO2多孔陶瓷的力学性能。当使用0.75%硬脂酸改性的ZrO2粉体时,所得多孔陶瓷无分层,孔结构完整,其抗压强度明显增加,为未改性ZrO2粉体所得多孔陶瓷的3倍。

 This paper was to investigate the preparation of porous ZrO2 ceramic via the expansion of a ceramic suspension by polyurethane (PU) foam system. The effect of stearic acid modification on the properties of porous ceramic was investigated. The results show that the compatibility of the system is improved due to the enhancement of hydrophobicity, the agglomeration of particles is restrained, the viscosity of the slurry is decreased and the formation of network is promoted due to the interaction between ceramic powders and functional groups of polyurethane after the modification. The addition of stearic acid can solve the delamination problem of green body and improve the mechanical properties of ZrO2 ceramic. When the addition of stearic acid is 0.75%, ZrO2 ceramic has good mechanical properties due to the complete pore structure with no delamination. The compressive strength of modified ZrO2 ceramic is three times greater than that of unmodified ZrO2 ceramic.

基金项目:
国家自然科学基金(51702184)和中国博士后科学基金(2017M610085)资助
作者简介:
参考文献:

 [1] 陆婵娟, 潘晓, 焦永峰. 多孔陶瓷的制备及应用研究现状[J]. 江苏陶瓷, 2008, 41(1): 23–25.

LU Chanjuan, PAN Xiao, JIAO Yongfeng. Jiangsu Ceramics (in Chinese), 2008, 41(1): 23–25.
[2] WOIGNIER T, REYNES J, PHALIPPOU J, et al. Nuclear waste storage in gel-derived materials[J]. J Sol-Gel Sci Technol, 2000, 19(1): 833–837.
[3] WANG Y Q, SHI Q, WANG J M, et al. Preparation of porous acoustic absorption ceramic[J]. B Chin Ceram Soc, 2010, 29(3): 1001–1625. 
[4] NAGADOMI H, KITAMURA T, WATANABE M, et al. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and H2S in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria[J]. Biotechnol Lett, 2000, 22(17): 1369–1374.
[5] MANICONE P F, IOMMETTI P R, RAFFAELLI L. An overview of zirconia ceramics: basic properties and clinical applications[J]. J Dent, 2007, 35(11): 819–826.
[6] 陈士冰. 多孔氧化锆陶瓷的制备及其性能的研究[D]. 济南:山东轻工业学院, 2010.
CHEN Shibing. Preparation and Investigate on Characteristics of Porous Zirconia Ceramic(in Chinese, dissertation). Jinan: Shandong Polytechnic University, 2010.
[7] 胡良发, 汪长安, 孙陈诚. 氧化钇稳定氧化锆多孔陶瓷的制备与性能[J]. 宇航材料工艺, 2010, 40(2): 55–58.
HU Liangfa, WANG Changan, SUN Chencheng. Aerosp Mater Technol (in Chinese), 2010, 40(2): 55–58.
[8] STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: a review[J]. J Am Ceram Soc, 2006, 89(6): 1771–1789.
[9] COX A R, CAGNOL F, RUSSELL A B, et al. Surface properties of glass II hydrophobins from trichoderma reesei and influence on bubble stability[J]. Langmuir, 2007, 23(15): 7995–8002.
[10] KARL S, SOMERS A V. Method of making porous ceramic articles, US3090094[P]. 1963–05–21.
[11] OLIVEIRA F A C, DIAS S, VAZ M F, et al. Behaviour of open-cell cordierite foams under compression[J]. J Eur Ceram Soc, 2006, 26(1): 179–186.
[12] JO I H, SHIN K H, SOON Y M, et al. Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template[J]. Mater Lett, 2009, 63(20): 1702–1704.
[13] JUN I K, SONG J H, CHOI W Y, et al. Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics[J]. J Am Ceram Soc, 2010, 90(9): 2703–2708.
[14] JANA P, ZERA E, SORARU G D. Processing of preceramic polymer to low density silicon carbide foam[J]. Mater Design, 2017, 116: 278–286.
[15] FRISCH K, WOOD L, MESSINA P. Method of preparing porous ceramic structures by firing a polyurethane foam that is impregnanted with inorganic material[P]. US3833386. 1974–09–03.
[16] PRABHAKARAN K., MELKERI A, GOKHALE N. M., et al. Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent[J]. Ceram Int, 2007, 33(1): 77–81.
[17] COLOMBO P, GRIFFONI M, MODESTI M. Ceramic foams from a preceramic polymer and polyurethanes: preparation and morphological investigations[J]. J Sol-Gel Sci Technol, 1998, 13(1): 195–199.
[18] ZHAI TL, LI D X, FEI G X, et al. Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam[J]. Compos Part A-Appls, 2015, 72: 108–114.
[19] RAINER A, BASOLI F, LICICCIA S, et al. Foaming of filled polyurethanes for fabrication of porous anode supports for IT-SOFC[J]. J Am Ceram Soc, 2006, 89(6): 1795–1800.
[20] ROITTI S, RAINER A, SERGO V. Catalitic properties of Ce-TZP ceramic foams[J]. Key Eng. Mater, 2004, 264: 2219–2222.
[21] 姚静. 竹粉/HDPE复合材料界面相容性研究[D]. 长沙:中南林业科技大学, 2012.
YAO Jing. The Research on Interfacial Compatibility of Bamboo Powder/HDPE Compositess(in Chinese, dissertation). Changsha: Central South University of Forestry and Technology, 2012.
[22] CAI X, RIEDL B, AIT-KADI A. Cellulose fiber/poly (ethylene-co-methacrylic acid) composites with ionic interphase[J]. Compos Part A-Appls, 2003, 34(11): 1075–1084.
[23] CANCHE-ESCAMILLA G, RODRIGUEZ-LAVIADA J, CAUICH-CUPUL J I, et al. Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites[J]. Compos Part A-Appls, 2002, 33(4): 539–549.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com