首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水溶性脱脂粉末注射成型制备PLZT压电陶瓷及其压电性能
作者:刘春林 秦帅 吴盾 方必军 曹峥 成骏峰 
单位:常州大学材料科学与工程学院 江苏省环境友好高分子材料重点实验室  江苏省光伏科学与工程协同创新中心 江苏 常州 213164 
关键词:水溶性脱脂 粉末注射成型 锆钛酸铅镧 压电性能 
分类号:TF124
出版年,卷(期):页码:2018,46(6):0-0
DOI:10.14062/j.issn.0454-5648.2018.06.07
摘要:

 以聚乙二醇(PEG)为水溶性脱脂树脂、聚乙烯醇缩丁醛(PVB)/聚甲醛(POM)为粉末包覆及保型树脂,研究了水溶性脱脂粉末注射成型(PIM)制备锆钛酸铅镧 (PLZT)压电陶瓷的工艺流程及黏结剂配比对注射成型喂料(简称喂料)脱脂率、流变行为的影响。用扫描电子显微镜观察了脱脂坯的微观形貌,通过热重分析确定烧结条件,研究了陶瓷的压电性能。结果表明:当黏结剂配比(质量比)为PEG:PVB:POM=6:2:2时(固含量50%),喂料具有较高的生坯强度和较低的黏度,PEG脱除速率快。脱脂坯以2 ℃/min升温至1 285 ℃完成烧结,与压制成型相比,PIM法制备的PLZT陶瓷晶粒生长更完善,尺寸均匀且致密度高,压电性能优异。

  Lead lanthanum zirconate titanate (PLZT) piezoelectric ceramic was prepared by water-soluble defatted powder injection molding (PIM) with polyethylene glycol (PEG) as a water-soluble degreasing resin and polyvinyl butyral (PVB)/polyoxymethylene (POM) as powder coating and preservative resin. The effect of binder ratio on the feed rate and rheological behavior was investigated. The morphology of the degreased pellets was determined by scanning electron microscopy. The sintering conditions were determined by thermogravimetric analysis, and the piezoelectric properties of the sintered ceramic were investigated. The results show that when the binder ratio is PEG:PVB:POM=6:2:2 (solid content 50%), the special material has a higher green strength and a lower viscosity, and the PEG removal rate is the maximum. Compared to compression molding, the PLZT ceramic prepared by the PIM method has better grain growth morphology, uniform grain size, high densification and excellent piezoelectric performance.

 
基金项目:
作者简介:
参考文献:

 [1] HU B, TANG X P, HU S, et al. Research on Micro-Displacement Driving Technology Based on Piezoelectric Ceramic[J]. Proc SPIE, 2012: 8418.

[2] 郑木鹏, 侯育冬, 朱满康, 等. 能量收集用压电陶瓷材料研究进  展[J]. 硅酸盐学报, 2016, 44(03): 359–366. 
ZHEN Mupeng, HOU Yudong, ZHU Mankang, et al. J Chin Ceram Soc, 2016, 44(03): 359–366.
[3] TRESSLER J F, ALKOY S, NEWNHAM R E. Piezoelectric sensors and sensor materials[J]. J Electroceram, 1998, 2(4): 257–272.
[4] SHI L P, HUANG J, WEI X W, et al. Investigation on multi-piezoelectric effects from the first positive piezoelectric effect[J]. Key Eng Mater, 2014, 609-610: 1398–1403.
[5] HUANG X, ZHAO W, GAO C, et al. Influence of Nb2O5 doped amount on the property of BCTZ lead-free piezoelectric ceramics doped with Li2CO3[J]. J Mater Sci–Mater El, 2014, 25(1): 505–509.
[6] LIN D, KWOK K W, CHAN H L W. Piezoelectric and ferroelectric properties of KxNa1–xNbO3 lead-free ceramics with MnO2 and CuO doping[J]. J Alloy Compd, 2008, 461(1-2): 273–278.
[7] 罗雨涵, 江向平, 陈超, 等. Nd3+掺Na0.25K0.25Bi2.5Nb2O9压电陶瓷的结构与性能[J], 硅酸盐学报, 2017, 45(3): 346–353.
LUO Yuhan, JIANG Xiangping, CHEN Chao, et al. J Chin Ceram Soc, 2017,45(3): 346–353.
[8] ZHANG X, XIA B, ZENG X, et al. Temperature dependence of electric-induced light scattering performance for PLZT ceramics[J]. J Am Ceram Soc, 2014, 97(5): 1389–1392.
[9] TAKADA Y, TSUJI T, OKAMOTO N, et al. Electrical properties of sol–gel derived PbLaZrTiOx capacitors with nonnoble metal oxide top electrodes[J]. ECS Trans, 2013, 50(34): 43–48.
[10] 李以贵, 颜平, 黄远, 等. 基于准分子激光的X光掩膜板与压电陶瓷加工[J]. 微纳电子技术, 2015, 52(12): 786–790.
LI Yigui, YAN Ping, HUANG Yuan, et al. Micronanoelectron Technol (in Chinese), 2015, 52(12): 786–790.
[11] 韩华军. 医用压电陶瓷片的超精密磨削加工实验研究[D]. 苏州大学, 2009.
HAN Huajun. Experimental study on ultra precision grinding of medical piezoelectric ceramic (in Chinese, dissertation). Suzhou: Suzhou University, 2009.
[12] LIU G W, XIE Z P, WANG W, et al. Fabrication of coloured zirconia ceramics by infiltrating water debound injection moulded green body[J]. Adv Appl Ceram, 2011, 110(1): 58–62.
[13] FU G, LOH N H, TOR S B, et al. Effects of injection molding parameters on the production of microstructures by micropowder injection molding[J]. Mater Manuf Process, 2005, 20(6): 977–985.
[14] LIU X J, YI Z Z, HUANG K M, et al. The influences of solid loading and molding variables on alumina injection molding[J]. Key Eng Mater, 2007, 336-338: 1021–1024.
[15] 郭怀兵, 蔡锴, 陈拥军, 等. 水基凝胶注模成型PZT压电陶瓷的形变控制[J]. 硅酸盐学报, 2013, 41(6): 745–750.
GUO Haibing, CAI Kai, CHEN Yongjun, et al. J Chin Ceram Soc, 2013, 41(6): 745–750.
[16] DU J H, GAN G Y, YAN J K, et al. Effects of Trammonium Citrate on Slurry of PMN-PZT in Gelcasting Process[J]. Adv Mater Res, 2012: 476–478, 1050–1053.
[17] CHEN Z, SONG X, LEI L, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing[J]. Nano Energy, 2016, 27(1): 78–86.
[18] GUO D, LI L T, GUI Z L, et al. Anti-crack machining of PZT ceramics for fabricating piezocomposites by using gelcasting technique[J]. Mater Sci Eng B. 2003, 99(1–3): 25–28.
[19] HAN J S, GAL C W, PARK J M, et al. Powder injection molding of PNN–PMN–PZN doped low temperature sintering PZT ceramics[J]. J Manuf Process, 2017, 28(1): 235–242.
[20] PIOTTER V, BECK M B, RITZHAUPT-KLEISSL H, et al. Recent developments in micro ceramic injection molding[J]. Int J Mater Res, 2008, 99(10): 1157–1162.
[21] SUPATI R, LOH N H, KHOR K A, et al. Mixing and characterization of feedstock for powder injection molding[J]. Mater Lett, 2000, 46(2–3): 109–114.
[22] HOSHINA T, TAKIZAWA K, LI J, et al. Domain size effect on dielectric properties of barium titanate ceramics[J]. Jpn J Appl Phys, 2008, 47(92): 7607–7611.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com