首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
熔盐镁热还原制备SiC纳米粉体及其氧化动力学
作者:葛胜涛 谭操 段红娟 刘江昊 毕玉保 王军凯 郑扬帆 张海军 
单位:武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081 
关键词:2H-碳化硅 纳米粉体 熔盐镁热还原 氧化动力学 
分类号:TB35
出版年,卷(期):页码:2018,46(6):0-0
DOI:10.14062/j.issn.0454-5648.2018.06.10
摘要:

 以SiO2及活性炭粉为反应物、Mg粉为还原剂、NaCl-KCl二元盐为反应介质,采用熔盐镁热还原法低温制备了SiC纳米粉体,并采用TG–DSC非等温氧化法对所合成SiC纳米粉体的氧化动力学进行了研究。结果表明:所合成SiC纳米粉体的主晶相为2H-SiC;合成2H-SiC的最佳工艺条件为n(C)和n(Si)摩尔比为1.3:1.0,Mg粉过量60% (质量分数)、反应条件为1 373 K保温3 h时合成粉体中2H-SiC的相对含量最高约为72%,所合成SiC的晶粒大小约为20~50 nm。Kissinger法和Ozawa法的计算结果表明:所合成SiC纳米粉体的氧化反应表观活化能分别约为267.96和270.33 kJ/mol

 SiC nano-powder was synthesized via a molten-salt-mediated magnesiothermic reduction method in NaCl-KCl molten salt using silicondioxide, activated carbon and magnesium powders as raw materials. The oxidation kinetics of prepared SiC nano-powder were analyzed by thermogravimetry-differential scanning calorimetry. SiC powder with crystalline sizes of 20–50 nm and 2H-SiC content of 72%(mass fraction) can be synthesized under the optimum condition (i.e., 1 373 K, 3 h, C and Si molar ratio of 1.3, and the excess Mg amount of 60%). The apparent activation energies of SiCnano-powder calculated based on the Kissinger and Ozawa methods are respectively 267.96 kJ/mol and 270.33 kJ/mol.

基金项目:
国家自然科学基金面上项目(51472184);湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602);湖北自然科学基金创新群体项目(2017CFA004)
作者简介:
参考文献:

 [1] FISSEL A, SCHRöTER B, RICHTE W. Low-temperature growth of SiC thin films on Si and 6H-SiC by solid-source molecular beam epitaxy[J]. Appl Phys Lett, 1995, 66(23): 3182–3184.

[2] 王军凯, 韩磊, 黄亮, 等. 催化反应制备碳化硅纳米粉体的密度泛函理论计算及实验研究[J]. 高等学校化学学报, 2017, 38(9): 1602–1610.
WANG Jun Kai, HAN Lei, HUANG Liang, et al. Chem J Chin Univ (in Chinese), 2017, 38(9): 1602–1610.
[3] STORASTA L, BERGMAN J P, JANZENE, et al. Deep levels created by low energy electron irradiation in 4H-SiC[J]. J Appl Phys, 2004, 96(9): 4909–4915.
[4] 王军凯, 张远卓,李俊怡,等. 微波加热催化反应低温制备β-SiC粉体[J]. 无机材料学报, 2017, 32(7): 725–730.
WANG Jun Kai, ZHANG YuanZhuo, LI Jun Yi, et al. J Inorg Mater (in Chinese), 2017, 32(7): 725–730.
[5] 黄安琪, 朱时珍, 刘玲, 等. 添加TiB2对SiC基复相陶瓷显微结构和力学性能的影响[J]. 硅酸盐学报, 2017, 45(7): 923–929.
HUANG An Qi, ZHU Shi Zhen, LIU Ling, et al. J Chin Ceram Soc, 2017, 45(7): 923–929.
[6] WANGJ, ZHANG Y, Li J, et al. Catalytic effect of cobalt on microwave synthesis of β-SiC powder[J]. Powder Technol, 2017, 317: 209–215.
[7] BUCEVAC D, BOSKOVIC S, MATOVIC B, et al. Toughening of SiC matrix with in-situ created TiB2particles[J]. Ceram Int, 2010, 36(7): 2181–2188.
[8] 王军凯, 李俊怡, 梁峰, 等. 以酚醛树脂为碳源低温催化反应合成碳化硅粉体[J]. 硅酸盐学报, 2016, 44(12): 1798–1804.
WANG Jun Kai, LI Jun Yi, LIANG Feng, et al. J Chin Ceram Soc, 2016, 44(12): 1798–1804.
[9] TAN C, LIU J, ZHANG H, et al. Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction[J]. Ceram Int, 2017, 43(3): 2431–2437.
[10] SONGB, BAO H, LI H, et al. Observation of glassy ferromagnetism in Al-doped 4H-SiC[J]. J Am Ceram Soc, 2009, 131(4): 1376–1377.
[11] LEE S K, KIM C H. Effects of α-SiC versus β-SiC starting powders on microstructure and fracture toughness of sic sintered with Al2O3–Y2O3 additives[J]. J Am Ceram Soc, 1994, 77(6): 1655–1658.
[12] POWELL J A, WILL H A. Low-temperature solid-state phase transformations in 2H silicon carbide[J]. J Appl Phys, 1972, 43(4): 1400–1408.
[13] KAWAMURA F, OGURA T, IMADEM, et al. Growth of 2H-SiC single crystals in a Li-based flux[J]. Mater Lett, 2008, 62(6–7): 1048–1051.
[14] IMADEM, OGURA T, UEMURA M, et al. Liquid-phase epitaxy of 2H-SiC film on a (0001) 4H-SiC substrate in Li–Si melt[J]. Mater Lett, 2009, 63(8): 649–651.
[15] ZOUG, DONG C, XIONG K, et al. Low-temperature solvothermal route to 2H-SiC nanoflakes[J]. Appl Phys Lett, 2006, 88(7): 3182.
[16] ITO A, KANNO H, GOTO T. 2H-SiC films grown by laser chemical vapor deposition[J]. J Eur Ceram Soc, 2015, 35(16): 4611–4615.
[17] YAO Y, LEE S T, LI F H. Direct synthesis of 2H-SiC nanowhiskers[J]. Chem Phys Lett, 2003, 381(5–6): 628–633.
[18] ZHANG S, KHANGKHAMANO M, ZHANG H, et al. Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction[J]. J Am Ceram Soc, 2014, 97(6): 1686–1688.
[19] LIU J, HUANG Z, HUO C, et al. Low-temperature rapid synthesis of rod-like ZrB2 powders by molten-salt and microwave Co-assisted carbothermal reduction[J]. J Am Ceram Soc, 2016, 99(9): 2895–2898.
[20] YE J, ZHANG S, LEE W E. Novel low temperature synthesis and characterisation of hollow silicon carbide spheres[J]. Micropor Mesopor Mat, 2012, 152(4): 25–30.
[21] 王军凯, 杜爽, 邓先功, 等.硼热/碳热还原反应合成ZrB2–SiC复合粉体及其抗氧化性能[J]. 硅酸盐学报, 2015, 43(9): 1197–1202.
WANG Jun Kai, DU Shuang, DENG Xian Gong, et al. J Chin Ceram Soc, 2015, 43(9): 1197–1202.
[22] LI F, Cao Y, LIU J, et al. Oxidation resistance of ZrB2, and ZrB2–SiC ultrafine powders synthesized by a combined sol–gel and boro/carbothermal reduction method[J]. Ceram Int, 2017, 43(10): 7743–7750.
[23] WANG Q, LI Y, LUO M, et al. Strengthening mechanism of graphene oxide nanosheets for Al2O3–C refractories[J]. Ceram Int, 2014, 40(1): 163–172.
[24] FATMI M, GHEBOULI B, GHEBOULIM A, et al. The kinetics of precipitation in Al-2.4 wt% Cu alloy by Kissinger, Ozawa, Bosswel and Matusita methods[J]. Phys B, 2011, 406(11): 2277–2280.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com