首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
离子导体Na0.5Bi0.49Ti0.98Mg0.02O3–δ的热化学稳定性
作者:刘蕴辉1 骆锋光1 方晓1 王运秋1 曾杰1 闫霞1 陈锡勇1 2 
单位:1. 广西大学资源环境与材料学院 南宁 530004  2. 广西有色金属及特色材料加工重点实验室 南宁 530004 
关键词:钛酸钠铋盐 氧离子导体 热化学稳定性 热相容性 阴极材料 电解质 
分类号:TQ174.1
出版年,卷(期):页码:2018,46(6):0-0
DOI:
摘要:

 具钙钛矿结构的Na0.5Bi0.49Ti0.98Mg0.02O3–δ材料(NBTMg-4902)因其在较低温度(400~700 ℃)范围内具有高氧离子电导率,被认为是一种极具潜力的中低温固体氧化物燃料电池(IT-SOFC)电解质材料,然而对该材料在操作温度范围内的热化学稳定性尚未有充分的研究。本工作通过X射线衍射、电子扫描显微镜及差热/热重联合分析仪等研究了NBTMg-4902材料在还原气氛环境下的化学稳定性以及该材料与几种SOFC阴极材料的热化学相容性,结果表明:NBTMg在还原气氛下(5% H2/95% N2)极易被分解还原生成金属铋;另外,其与阴极材料(LSC及BSCF)在热处理过程中极易发生固相反应,不具备良好的热化学相容性,说明该材料在SOFC应用中具有一定的局限性。

 Perovskite materials of Na0.5Bi0.49Ti0.98Mg0.02O3-(NBTMg-4902) have a high ionic conductivity at 400–700 ℃, and they are regarded as a potential electrolyte in the application of intermediate-temperature solid oxide fuel cells (IT-SOFC). However, its thermo-chemical stability has not been reported yet. For this purpose, this paper investigated its thermo-chemical compatibility with a few common SOFC cathode materials and its own chemical stability in a reduced atmosphere by X-ray diffraction, scanning electron microscopy, and synchronic differential thermal analysis-thermal gravimetry, respectively. The results show that NBTMg-4902 suffers decomposition in a 5%H2/95%N2 atmosphere to produce metallic Bi and it also has a poor thermo-chemical compatibility with common SOFC cathode materials. All these findings indicate its limitation in the application as an effective electrolyte in SOFC.

基金项目:
广西自然科学基金(2016GXNSFAA380214);广西教育厅高校科研项目(KY2015YB004);广西大学“大学生创新创业训练计划”(201610593059)
作者简介:
参考文献:

 [1] 韩敏芳,张永亮. 固体氧化物燃料电池中的陶瓷材料[J]. 硅酸盐学报, 2017, 11(45): 1548–1554.

HAN M F, ZHANG Y L. J Chin Ceram Soc, 2017, 11(45): 1548–1554.
[2] BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008, 37(8): 1568–1578.
[3] LI M, PIETROWSKI M J, De SOUZA R A, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3[J]. Nat Mater, 2013, 13(1): 31–35.
[4] CHEN X, ZENG J, YAN X, et al. Effects of Bi deficiency on the microstructural and conductive properties of Na0.5Bi0.5TiO3 (NBT) perovskites[J]. Solid State Ionics, 2017, 309: 152–162.
[5] HE X, MO Y. Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations[J]. Phys Chem Chem Phys, 2015, 17(27): 18035–18044.
[6] KHARTON V V, FIGUEIREDO F M, NAVARRO L, et al. Ceria-based materials for solid oxide fuel cells[J]. J Mater Sci, 2001, 36(5): 1105–1117.
[7] ZHA S, XIA C, MENG G. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. J Power Sources, 2003, 115(1): 44–48.
[8] VASYLECHKO L, VASHOOK V, SAVYTSKII D, et al. Crystal structure, thermal expansion and conductivity of anisotropic La1−xSrxGa1−2xMg2xO3−y (x=0.05, 0.1) single crystals[J]. J Solid State Chem, 2003, 172(2): 396–411.
[9] WU Y, LEE M. Properties and microstructural analysis of La1−xSrxGa1−yMgyO3-δsolid electrolyte ceramic[J]. Ceram Int, 2013, 39(8): 9331–9341.
[10] HUANG J, ZHU F, HUANG D, et al. Intermediate-temperature conductivity of B-site doped Na0.5Bi0.5TiO3-based lead-free ferroelectric ceramics[J]. Ceram Int, 2016, 42(15): 16798–16803.
[11] JACOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2010, 22(3): 660–674.
[12] GOODENOUGH J B. Oxide-ion electrolytes[J]. Annu Rev Mater Res, 003, 33(1): 91–128.
[13] SHAO Z P, HAILE S M. A High-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170–173
[14] JONES G O, THOMAS P A. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3[J]. Acta Crystallogr B, 2002, B58(2): 168–178.
[15] TOBY B H. EXPGUI, a graphical user interface for GSAS[J]. J Appl Crystallogr, 2001, 34(2): 210–213.
[16] AHN J S, PERGOLESI D, CAMARATTA M A, et al. High performance bilayered electrolyte intermediate temperature solid oxide fuel cells[J]. Electrochem Commun, 2009, 11(7): 1504–1507
[17] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogra, 1976, 5(A32): 751–767.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com