首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
固体氧化物燃料NiO–YSZ/YSZ半电池的冲击力学性能
作者:李善恩1 徐挺1 缪馥星1 官万兵2 
单位:1. 宁波大学冲击与安全工程教育部重点实验室 浙江 宁波 315211  2. 中国科学院宁波材料技术与工程研究所 浙江 宁波 315201 
关键词:固体氧化物燃料电池 Hopkinson 压杆 动态应力–应变 波传播 应变率 氧化镍–钇稳定氧化锆/钇稳定氧化锆半电池 
分类号:TB332
出版年,卷(期):页码:2018,46(6):0-0
DOI:10.14062/j.issn.0454-5648.2018.06.17
摘要:

 应用Hopkinson压杆装置,研究了阳极支撑固体氧化物燃料电池片(SOFC)半电池NiO–YSZ/YSZ的冲击力学性能,得到了半电池薄片在不同应变率下的应力–应变曲线,分析了半电池中的应力波传播特性及其应变率效应。结果表明:半电池薄片在冲击载荷下,弹性变形范围很小,塑性屈服极限强度较小,且对应的应变值也较小。在半电池样品的极限强度范围内,随着应变的增大,半电池样品薄片的动态应力–应变曲线的切线模量减小,属于递减硬化材料;半电池中的应力波传播速率减小。随着应变率的增加,半电池薄片的极限强度增大,应变率效应明显。另外,随着波阻抗比的增大,半电池薄片中应力–应变“均匀化”分布的透射–反射次数随之减小。

 The impact mechanical performance, deformation, stress wave propagation characteristics, and dynamic stress-strain response of anode-supported planar solid oxide fuel cell were investigated in the Hopkinson bar device. The results show that all the half-cell samples exhibit small elastic and plastic deformation regimes and a small yield strength, indicating that they are brittle-like materials. The tangential modulus estimated from the dynamic stress-strain curves decreases with the increment of strain, demonstrating that the half-cell samples behave like the reduced hardening materials. All the mechanical performances are related to the strain rate. A high strain rate leads to a high wave impedance ratio. A small number of transmission-reflection is need to achieve the homogenization for the stress-strain distribution.

基金项目:
国家自然科学基金(11572161,51502316);机械结构强度与振动国家重点实验室(SV2016–KF–17);浙江省“近海结构冲击安全防护与健康监测”重点科技创新团队(2013TD21)
作者简介:
参考文献:

 [1] YAMAMOTO O. Solid oxide fuel cells: fundamental aspects and prospects[J]. Electrochim Acta, 2000, 45(15–16): 2423–2435.

[2] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy[J]. Renew Sustain Energy Rev, 2002, 6(5): 433–455.
[3] MINH N Q. Solid oxide fuel cell technology features and applications[J]. Solid State Ionics, 2004, 174(1): 271–277.
[4] BADWAL S P S, FOGER K. Solid oxide electrolyte fuel cell review[J]. Ceram Int, 1996, 22(3): 257–265.
[5] RECHBERGER J, KAUPERT A, HAGERSKANS J, et al. Demonstration of the first european SOFC APU on a heavy duty Truck[J]. Transp Res Procedia, 2016, 14: 3676–3685.
[6] KUTTAN P, AN M, OVEAS B M, et al. Preparation of a porous cermet SOFC anode substrate by gelcasting of NiO–YSZ powders[J]. J Am Ceram Soc, 2010, 90(2): 622–625.
[7] MYUNG J H, KO H J, CHANG H I, et al. Development of solid oxide fuel cells (SOFCs) by tape-casting and single-step co-firing of monolithic laminates[J]. Int J Hydrogen Energy, 2014, 39(5): 2313–2319.
[8] 黄良钊, 张安平. Al2O3陶瓷的动态力学性能研究[J]. 中国陶瓷, 1999, 35(1): 13–15.
HUANG L Z, ZHANG A P. China Ceram (in Chinese), 1999, 35(1): 13–15.
[9] ZHANG J T, SHI H J, CAI M C, et al. The dynamic of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process[J]. Mater Sci Eng A, 2009, 527(1): 218–224.
[10] ZHANG J T, LIU L S, ZHAI P C, et al. Effect of fabrication process on the microstructure and dynamic compressive properties of SiCp/Al composites fabricated by spark plasma sintering[J]. Mater Lett, 2008, 62(3): 443–446.
[11] HOLTAPPELS P, BAGGER C. Fabrication and performance of advanced multi-layer SOFC cathodes[J]. J Eur Ceram Soc, 2002, 22(1): 41–48.
[12] MALZBENDER J, WESSL E, STEINBRECH R W. Reduction and re-oxidation of anodes for solid oxide fuel cells[J]. Solid State Ionics, 2005, 176(29–30): 2201–2203.
[13] MALZBENDER J, FISCHER W, STEINBRECH R W. Studies of residual stresses in planar solid oxide fuel cells[J]. J Power Sources, 2008, 182(2): 594–598.
[14] 于俊杰, 管甲锁. 基于高SiO2含量的Si3N4基陶瓷显微结构与力学性能[J]. 硅酸盐学报, 2016, 44(12): 1713–1717.
YU J J, GUAN J S. J Chin Ceram Soc, 2016, 44(12): 1713–1717. 
[15] 汪峰, 缪馥星, 官万兵. 不同还原条件下制备的固体氧化物燃料电池支撑阳极Ni–YSZ的性能[J]. 硅酸盐学报, 2015, 43(5): 650–656.
WANG F, MIAO F X, GUAN W B. J Chin Ceram Soc, 2015, 43(5): 650–656.
[16] LI L J, CHENG L F, FAN S W, et al. Fabrication and dynamic compressive response of laminated ZrO–Zr2CN/Si3N4 ceramics[J]. Ceram Int, 2015, 41(7): 8584–8591.
[17] 邵彬彬, 徐颖, 许维伟, 等. 短切碳纤维C/SiC陶瓷基复合材料的动态力学性能研究[J]. 科学技术与工程, 2015, 15(33): 98–102.
SHAO B B, XU Y, XU W W, et al. Sci Technol Eng (in Chinese), 2015, 33(15): 1671–1815.
[18] XUE Y J, GUAN W B, HE C R, et al. Fabrication of porous anode-support for planar solid oxide fuel cells using fish oil as a pore former[J]. Int J Hydrogen Energy, 2016, 41: 8533–8541.
[19] WANG F, MIAO F X, GUAN W B. In suit investigation of anode support on cell performance reduced under various temperatures for planar solid oxide fuel cells[J]. Fuel Cells, 2015, 15(2): 427–433.
[20] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005: 16–58.
[21] SANKAYE S S. Dynamic testing to determine some mechanical properties of Aluminum, Copper, and Dry Eglin Sand Using Split Hopkinson Pressure Bar (SHPB), High Speed Photography and Digital Image Correlation (DIC)[D]. Aurangabad, Maharashtra: Dr. Babasaheb Ambedkar University, 2008.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com