首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Yb3+/Al3+/Ce3+/F–掺杂石英玻璃的结构与性质
作者:邵冲云1 2  璠1 2 郭梦婷1 2 杨佳慧3 张海波1 李吉豪4 王世凯1 于春雷1 任进军1 胡丽丽1 
单位:(1.中国科学院上海光学精密机械研究所 上海  201800 2. 中国科学院大学 北京  100049  3. 布鲁克(北京)科技有限公司 北京100192 4. 中国科学院上海应用物理研究所 上海  201800) 
关键词:掺氟石英玻璃 结构弛豫 耐辐射 稀土局域结构 
分类号:TN244
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.19
摘要:

 采用溶胶–凝胶法结合高温真空烧结制备不同F含量的Yb3+/Al3+/Ce3+/F–掺杂石英玻璃。系统研究了F含量变化对这些玻璃的折射率、光谱性质、耐辐射特性的影响,并联用多种结构解析手段从玻璃微观结构变化角度研究其影响机理。通过Fourier转换红外光谱(FTIR)测定玻璃的假想温度(Tf),该温度与玻璃的结构混乱度有关;采用固态核磁共振(NMR)和Raman光谱研究玻璃的网络结构变化;用脉冲电子顺磁共振(EPR)技术研究Yb3+离子的局部环境;采用连续波EPR和光学吸收谱鉴定γ射线辐射诱导玻璃形成的硅相关(Si-E'、NBOHC)、铝相关(Al-E'、Al-ODC、AlOHC)和镱相关(Yb2+)色心。研究结果表明,掺F不但能有效降低玻璃折射率和提高玻璃的耐辐射特性,且不会明显恶化Yb3+离子的光谱性质;FTIR测试表明,掺F急剧降低了玻璃的Tf和结构混乱度;Raman和NMR测试表明,随着F含量增加,三元环和四元环结构下降,六配位铝(AlVI)明显增加;脉冲EPR测试表明,F原子进入Yb3+的局部环境。这些结构解析有助于解释F含量变化对Yb3+/Al3+/Ce3+/F-掺杂石英玻璃宏观性质的影响机理,为制备低数值孔径且抗辐射的掺Yb3+石英光纤提供了参考。

 Yb3+/Al3+/Ce3+/F–-co-doped silica glasses with different fluorine contents were prepared by a sol-gel method combined with high-temperature sintering. Changes in refractive index, spectroscopic properties and radiation resistance of these glasses caused by fluorine doping have been correlated with their microscopic structure information, obtained via several structural methods. The fictive temperature (Tf) as a proper indicator for structural disorder was determined by Fourier transform infrared spectroscopy (FTIR). The glass network structure was characterized by nuclear magnetic resonance (NMR) and Raman scattering. The local coordination atom structures of Yb3+ ions in pristine glasses as a function of fluorine content were analyzed by advanced pulse electron paramagnetic resonance (EPR). The radiation-induced Si-(Si-E', NBOHC), Al-(Al-E', Al-ODC, AlOHC) and Yb-(Yb2+) related color centers were determined by optical absorption and continuous wave-EPR spectroscopies. The results show that fluorine can effectively adjust the refractive index and significantly improve the radiation resistance of glasses, but cannot evidently deteriorate the spectroscopic properties of Yb3+ ions. FTIR confirms that the fictive temperature as well as structural disorder is greatly reduced by fluorine doping. The three- and four-membered ring structures decrease and the six-coordinated Al increases with increasing fluorine content as detected by Raman and NMR, respectively. Pulse EPR confirms that fluorine is located at the local coordination sphere of Yb3+ ions. This structure identification could favor to explain the composition-dependent macroscopic properties of Yb3+/Al3+/Ce3+/F--doped silica glasses, besides, this work provides an available solution to obtain the radiation-resistive Yb3+-doped silica fibers with a low core numerical aperture as well.

基金项目:
国家自然科学基金(61875216,61775224,61505232);国家高技术研究发展计划(2016YFB0402201)。
作者简介:
参考文献:

 [1] WRIGHT M W, VALLEY G C. Yb-doped fiber amplifier for deep-space optical communications[J]. J Lightwave Technol, 2005, 23(3): 1369–1374.

[2] GIRARD S, VIVONA M, LAURENT A, et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Opt Express, 2012, 20(8): 8457–8465.
[3] SHAO C, XU W, OLLIER N, et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: Evidence from optical spectroscopy, EPR and XPS analyses[J]. J Appl Phys, 2016, 120: 153101.
[4] XU W, YU C, WANG S, et al. Effects of F− on the optical and spectroscopic properties of Yb3+/Al3+-co-doped silica glass[J]. Opt Mater, 2015, 42: 245–250.
[5] LI W, LUO R, LI C, et al. Effects of fluorine on the properties of Yb/Ce co-doped aluminosilicate preforms prepared by MCVD with organic chelate precursor doping technique[J]. J Non-Cryst Solids, 2016, 449: 119–124.
[6] SCHUSTER K, GRIMM S, KALIDE A, et al. Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials[J]. Opt Mater Express, 2015, 5(4): 887–897.
[7] EI HAMZAOUI H, BOUWMANS G, CASSEZ A, et al. F/Yb-codoped sol–gel silica glasses: toward tailoring the refractive index for the achievement of high-power fiber lasers[J]. Opt Lett, 2017, 42(7): 1408–1411.
[8] PETIT V, TUMMINELLI R P, MINELLY J D, et al. Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD [C]//Fiber Lasers XIII: Technology, Systems, and Applications. International Society for Optics and Photonics, SPIE LASE, 2016, San Francisco, California, United States, 2016, 9728: 97282R.
[9] XU W, LIN Z, WANG M, et al. 50 μm core diameter Yb3+/Al3+/F−-codoped silica fiber with M2<1.1 beam quality[J]. Opt Lett, 2016, 41(3): 504–507.
[10] WANG F, HU L, XU W, et al. Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers[J]. Opt Express, 2017, 25(21): 25960–25969.
[11] MORANA A, GIRARD S, CANNAS M, et al. Influence of neutron and gamma-ray irradiations on rad-hard optical fiber[J]. Opt Mater Express, 2015, 5(4): 898–911.
[12] KAJIHARA K, IKUTA Y, OTO M, et al. UV–VUV laser induced phenomena in SiO2 glass[J]. Nucl Instrum Methods Phys Res Sect B, 2004, 218: 323–331.
[13] DESCHAMPS T, VEZIN H, GONNET C, et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Opt Express, 2013, 21(7): 8382–8392.
[14] YOUNGMAN R E, SEN S. The nature of fluorine in amorphous silica[J]. J Non-Cryst Solids, 2004, 337(2): 182–186.
[15] SAITO K, IKUSHIMA A J. Effects of fluorine on structure, structural relaxation, and absorption edge in silica glass[J]. J Appl Phys, 2002, 91(8): 4886–4890.
[16] TOOL A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. J Am Ceram Soc, 1946, 29(9): 240–253.
[17] AGARWAL A, DAVIS K M, TOMOZAWA M. A simple IR spectroscopic method for determining fictive temperature of silica glasses[J]. J Non-Cryst Solids, 1995, 185(1): 191–198.
[18] MASSIOT D, FAYON F, CAPRON M, et al. Modelling one- and two-dimensional solid-state NMR spectra[J]. Magn Reson Chem, 2002, 40(1): 70–76.
[19] KIRIYAMA H, SRINIVASAN N, YAMANAKA M, et al. Temperature Dependence of Emission Cross-section of Yb:glass[J]. Jpn J Appl Phys, 1997, 36(9A/B): L1165–L1167.
[20] ZHANG L, XUE T, HE D, et al. Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses[J]. Opt Express, 2015, 23(2): 1505–1511.
[21] YANG B, LIU X, WANG X, et al. Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems[J]. Opt Lett, 2014, 39(7): 1772–1774.
[22] SHAO C, REN J, WANG F, et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: Effect of the P/Al ratio[J]. J Phys Chem B, 2018, 122(10): 2809–2820.
[23] SKUJA L, TANIMURA T, ITOH N. Correlation between the radiation-induced intrinsic 4.8 eV optical absorption and 1.9 eV photoluminescence bands in glassy SiO2[J]. J Appl Phys, 1996, 80(6): 3518–3525.
[24] HIDEO H, HIROSHI K. Radiation-induced coloring and paramagnetic centers in synthetic SiO2:Al glasses[J]. Nucl Instrum Methods Phys ResSect B, 1994, 91(1/4): 395–399.
[25] 王凯旋, 邓风. Y 型沸石脱铝机制和铝状态的 NMR 研究[J]. 波谱学杂志, 1995, 12(2): 119–125.
WANG K, LI H, DENG F, et al. Chin J Magn Resona(in Chinese), 1995, 12(2): 119–125.
[26] 王雪静, 周继红, 黄浪, 等. 煅烧高岭土的 NMR 研究[J]. 波谱学杂志, 2006, 23(1): 49–55.
WANG X, ZHOU J, HUANG L, et al. Chin J Magn Resona(in Chinese), 2006, 23(1): 49–55.
[27] ZHANG L, DE ARAUJO C C, ECKERT H. Structural role of fluoride in aluminophosphate sol−gel glasses: High-resolution double-resonance NMR studies[J]. J Physl Chem B, 2007, 111(35): 10402–10412.
[28] PASQUARELLO A, CAR R. Identification of Raman defect lines as signatures of ring structures in vitreous silica[J]. Phys Rev Lett, 1998, 80(23): 5145–5147.
[29] SHIMODAIRA N, SAITO K, IKUSHIMA A J. Raman spectra of fluorine-doped silica glasses with various fictive temperatures[J]. J Appl Phys, 2002, 91(6): 3522–3525.
[30] MOZZI R L, WARREN B E. The structure of vitreous silica[J]. J Appl Crystallogr, 1969, 2(4): 164–172.
[31] SKUJA L, HOSONO H, HIRANO M, et al. Advances in silica-based glasses for UV and vacuum UV laser optics[J]. Proc SPIE, 2003, 4948: 683–688.
[32] GALEENER F L. Planar rings in vitreous silica[J]. J Non-Cryst Solids, 1982, 49(1/.3): 53–62.
[33] ZHANG R, DE OLIVEIRA M, WANG Z, et al. Structural Studies of fluoroborate laser glasses by solid state NMR and EPR spectroscopies[J]. J Phys Chem C, 2016, 121(1): 741–752.
[34] DE OLIVEIRA M, UESBECK T, GONCALVES T S, et al. Network structure and rare-earth ion local environments in fluoride phosphate photonic glasses studied by solid-state NMR and electron paramagnetic resonance spectroscopies[J]. J Phys Chem C, 2015, 119(43): 24574–24587.
[35] XU W, REN J, SHAO C, et al. Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ co-doped silica glass[J]. J Lumin, 2015, 167: 8–15.
[36] FUNABIKI F, KAJIHARA K, KANEKO K, et al. Characteristic coordination structure around Nd Ions in sol–gel-derived Nd–Al-codoped silica glasses[J]. J Phys Chem B, 2014, 118(29): 8792–8797.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com