首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
三元磷酸氧碲晶体的生长
作者:董卫民1  倩1 张俊英1 柳林涛1  静1 王继扬1 BOUGHTON Robert I.2 
单位:(1. 山东大学 晶体材料国家重点实验室 济南 250100  2. 博林格林州立大学物理与天文系 博林格林市 俄亥俄州 美国 43403) 
关键词:磷酸氧碲晶体 晶体生长 提拉法 
分类号:O782
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.02
摘要:

 采用提拉法按照不同的原料配比(P2O5的摩尔分数分别为14.0%,16.0%,20.0%,22.0%,25.0%和33.3%),生长出Te8P4O26、Te3P2O11和Te2P2O9,3种新的磷酸氧碲晶体。确定了提拉法生长晶体的生长参数;介绍了3种晶体的结构;表征了3种晶体的热性能与红外光谱;计算了晶体中磷氧四面体的扭曲程度和偶极矩;探究了磷氧四面体的对称性与红外光谱中P–O振动峰的简并性之间的关系。结果表明:3种晶体都是纯相晶体且没有杂质存在;Te8P4O26和Te3P2O11在加热过程中存在相变或不一致熔融,而Te2P2O9一致熔融;随着磷氧四面体(PO4)对称性的增加,红外光谱中P–O振动峰的简并性增加。

 Three tellurium oxide phosphate crystals, i.e., Te8P4O26, Te3P2O11, and Te2P2O9, were grown at different P2O5 contents (i.e., mole fractions of P2O5 are 14.0%, 16.0%, 20.0%, 22.0%, 25.0%, and 33.3%, respectively) by the Czochralski method. The growth parameters for these crystals were determined. The structure of the Te8P4O26, Te3P2O11, and Te2P2O9, crystals was introduced. The thermal properties and infrared spectra of the three crystals were characterized. The distortion degree and the dipole moment of PO4 tetrahedron in the three crystals was calculated, and the relationship between the symmetry of PO4 polyhedrons and the degeneracy of the P–O vibration band in the infrared spectra was analyzed. The results show that the three crystal are pure-phase crystals without any impurities. The thermal characteristics of the three crystals indicate that Te8P4O26 and Te3P2O11 have phase transitions or inconsistent melting during heating, while Te2P2O9 congruent melting. The degeneracy of the P–O vibration peak in the infrared spectra increases with the increase of the symmetry of PO4 tetrahedron.

基金项目:
国家自然科学基金项目(51772171,51272130)
作者简介:
参考文献:

 [1] ALCOCK N W, HARRISON W D. Refinement of the structure of tellurium phosphate Te2O3.HPO4[J]. Acta Crystallogr B, 1982, 38: 1809–1811.

[2] KIM M K, KIM S H, CHANG H Y, et al. New noncentrosymmetric tellurite phosphate material: synthesis, characterization, and calculations of Te2O(PO4)2[J]. Inorg Chem, 2010, 49: 7028–7034.
[3] OK K M, HALASYAMANI P S. Synthesis, structure, and characterization of a new one-dimensional tellurite phosphate, Ba2TeO(PO4)2[J]. J Solid State Chem, 2006, 179: 1345–1350.
[4] SCHMIDT P, DALLMANN H, KADNER G, et al. The thermochemical behaviour of Te8O10(PO4)4 and its use for phosphide telluride synthesis[J]. Z Anorg Allg Chem, 2009, 635: 2153–2161.
[5] MAYER H, WEIL M. Synthesis and crystal structure of Te3O3(PO4)2, a compound with 5-fold coordinate tellurium(IV)[J]. Z Anorg Allg Chem, 2003, 34: 1068–1072.
[6] BALRAJ V, VIDYASAGAR K. Low-temperature syntheses and characterization of novel layered tellurites, A2Mo3TeO12 (A=NH4, Cs), and “zero-dimensional” tellurites, A4Mo6Te2O24•6H2O (A=Rb, K) [J]. Inorg Chem, 1998, 37: 4764–4774.
[7] XIAO B, KLINKENBERG M, BOSBACH D, et al. Effects of Te(IV) Oxo-Anion incorporation into thorium molybdates and tungstates[J]. Inorg Chem, 2015, 54: 5981-5990. 
[8] ZHANG J J, TAO X T, SUN Y X, et al. Top-seeded solution growth, morphology, and properties of a polar crystal Cs2TeMo3O12[J]. Cryst Growth Des, 2011, 11: 1863–1868
[9] ZHANG W G, TAO X T, ZHANG C Q, et al. Structure and  thermal properties of the nonlinear optical crystal BaTeMo2O9[J]. Cryst Growth Des, 2009, 9: 2633–2636.
[10] OK K M, HALASYAMANI P S. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach[J]. Chem Mater, 2006, 18: 3176–3183.
[11] BALRAJ V, VIDYASAGAR K. Low-temperature syntheses and characterization of novel layered tellurites, A2Mo3TeO12 (A = NH4, Cs), and “zero-dimensional” tellurites, A4Mo6Te2O24•6H2O (A = Rb, K) [J]. Inorg Chem, 1998, 37: 4764–4774.
[12] RADA S, CULEA E, FTIR spectroscopic and DFT theoretical study on structure of europium–phosphate–tellurate glasses and glass ceramics[J]. J Mol Struct, 2009, 929: 141–148.
[13] RADA S, CULEA M, RADA M, et al. Competitive role of the tellurium and gadolinium cations in structural aspects of the gadolinium–phosphate–tellurate glasses[J]. J Alloy Compd, 2010, 490, 270–276.
[14] DING S, ZHANG Q, PENG F, et al. Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd:GdYNbO4 laser crystal[J]. J Alloy Compd, 2007, 698: 159–163.
[15] KOZHUKHAROV V S, MARINOV M R, PAVLOVA J N. Phase equilibria and immiscibility in the TeO2–P2O5 system[J]. J Mater Sci, 1978, 13: 997–1005.
[16] MAYER H, PUPP G Z. synthesis and crystal-structure of Te8O10(PO4)4[J]. Kristallogr Kristallgeom Kristallphys Kristallchem, 1977, 145, 321–333.
[17] PENIN N, TOUBOUL M, NOWOGROCKI G. New form of the Cs2O–B2O3 phase diagram[J]. J Cryst Growth, 2003, 256: 334–340.
[18] ZHAO S G, ZHANG J, ZHANG S Q, et al. A new UV nonlinear optical material CsZn2B3O7: ZnO4 tetrahedra double the efficiency of second-harmonic generation[J]. Inorg Chem, 2014, 53: 2521–2527.
[19] LU J, GUO F, CHEN J. Growth and characteristic of Sr3Tb(BO3)3 crystal[J]. J Cryst Growth, 2011, 314: 157–162.
[20] XIAO B, KEGLER P, BOSBACH D, et al. Investigation of reactivity and structure formation in a K–Te–U oxo-system under high-temperature / high-pressure conditions[J]. Dalton Trans, 2016, 45: 15225–15235.
[21] PENEL G, LEROY G, REY C, et al. Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites[J]. Calcified Tissue Int, 1998, 63: 475–481.
[22] NAKAMOTO K, FUJITA J, TANAKA S, et al. Infrared spectra of metallic complexes. IV. Comparison of the infrared spectra of unidentate and bidentate metallic complexes[J]. J Am Chem Soc, 1957, 79: 4904–4908. 
[23] TSUBOI M. Vibrational spectra of phosphite and hypophosphite anions, and the characteristic frequencies of PO3- and PO2-groups[J]. J Am Chem Soc, 1957, 79: 1351–1354.
[24] CREIGHTON J A. Splitting of degenerate vibrational modes due to symmetry perturbations in tetrahedral M4 and octahedral M6 clusters[J]. Inorg Chem, 1982, 21: 1–4.
[25] CHIAVARINO B, CRESTONI M E, FORNARINI S. Vibrational signatures of gaseous Meisenheimer complexes bonded at carbon and nitrogen[J]. Int J Mass Spectrom, 2017, 418: 173–179.
[26] BROWN I D. On measuring the size of distortions in coordination polyhedra[J]. Acta Cryst, 2006, 62: 692–694.
[27] BOSI F, BELARDI G, BALLIRAN P. Structural features in Tutton's salts K2 [M2+ (H2O) 6](SO4) 2, with M2+= Mg, Fe, Co, Ni, Cu, and Zn[J]. Am Miner, 2009, 94: 74–82.
[28] MAGGARD P A, NAULT T S, STERN C L, et al. Alignment of acentric MoO3F33– anions in a polar material: (Ag3MoO3F3)•(Ag3MoO4)Cl[J]. J Solid State Chem, 2003, 175: 27–33.
[29] ZHANG J J, ZHANG Z H, ZHANG W G, et al. Polymorphism of BaTeMo2O9: a new polar polymorph and the phase transformation[J]. Chem Mater, 2011, 23: 3752–3761.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com