首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
膜厚对超薄四面体非晶碳膜应力和结构的影响
作者:许世鹏2 3 李晓伟1 陈仁德1 李玉宏2 3 汪爱英1 
单位:(1. 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室  中国科学院宁波材料技术与工程研究所 浙江 宁波 315201 2. 甘肃省太阳能发电系统工程重点实验室  酒泉新能源研究院 甘肃 酒泉 735000 3. 酒泉职业技术学院 甘肃 酒泉 735000) 
关键词:四面体非晶碳膜 膜厚 残余应力 薄膜结构 
分类号:TQ171
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.10
摘要:

 利用自主研制的45°双弯曲磁过滤阴极真空电弧技术制备超薄四面体非晶碳膜,研究了膜厚变化对超薄四面体非晶碳膜残余应力和微观结构的影响。结果表明:膜厚从7.6 nm增加到50 nm时,残余应力和sp3含量先减小后增加;当膜厚为29 nm时,可以得到最小的残余应力为3.9 GPa。制备的薄膜表面粗糙度都小于纯硅片表面粗糙度(0.412 nm),表明沉积的碳粒子可以减少基体表面的缺陷;基于磁过滤阴极真空电弧技术的优势,制备的超薄四面体非晶碳膜在较大区域内表面无大颗粒等物质。

  Ultrathin tetrahedral amorphous carbon (ta-C) films were prepared by a homemade 45° double-bent filtered cathodic vacuum arc (FCVA) technique. The dependence of residual stress and microstructure evolution on film thickness was studied. The results revealed that as the film thickness increased from 7.6 to 50 nm, the residual compressive stress and sp3 fraction decreased first and then increased; when the film thickness was 29 nm, a minimum residual stress of 3.9 GPa was obtained. The surface roughness for each film was lower than that of bare Si wafers (0.412 nm). This implies that the deposited C ions filled in the defects of the substrate. There was not any macroparticle or droplet in the extremely large area of the film, identifying the benefits of the homemade FCVA system.

基金项目:
国家自然科学基金项目(51371187,51522106);甘肃省科技创新服务平台专项(1505JTCF039);甘肃省高等学校科研项目(2017A-273);兰州理工大学新能源学院重点科研项目(LUT-XNY-2017009)
作者简介:
参考文献:

 [1] CHEN B J, SUN X W, TAY B K, et al. Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film[J]. Appl Phys Lett, 2005, 86: 063506.

[2] FERRARI A C. Diamond-like carbon for magnetic storage disks[J]. Surf Coat Technol, 2004, 180: 190–194. 
[3] LI D J, GURUZ M U, BHATIA C S, et al. Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems[J]. Appl Phys Lett, 2002, 81: 1113–1117.
[4] BRAND J, GADOW R, KILLINGER A. Application of diamond-like carbon coatings on steel tools in the production of precision glass components[J]. Surf Coat Technol, 2004, 180(2): 213–219.
[5] LETTINGTON A H. Applications of diamond-like carbon thin films[J]. Carbon, 1998, 36: 555–560.
[6] GRILL A, NGUYEN S, SAENGER K L. Field effect transistor using carbon based stress liner [P]. US Patent, 7851288. 2010–12–14. 
[7] 李晓伟, 周毅, 孙丽丽, 等. 椭偏法表征四面体非晶碳薄膜的化学键结构[J]. 光学学报, 2012, 32: 1003–1005.
LI Xiaowei, ZHOU Yi, SUN Lili, et al. Acta Opt Sin (in Chinese), 2012, 32: 1003–1005. 
[8] PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998: 89–110. 
[9] FUJIWARA H. Spectroscopic Ellipsometry Principles and Applications[M]. Tokyo: Maruzen Co. Ltd Press, 2007: 81–87.
[10] 周毅, 吴国松, 代伟, 等. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度[J]. 物理学报, 2010, 59(2): 356–361.
ZHOU Yi, WU Guosong, DAI Wei, et al. Acta Phys Sin (in Chinese), 2010, 59(2): 356–361.
[11] SHEEJA D, TAY BK, LEONG KW, et al. Effect of film thickness on the stress and adhesion of diamond-like carbon coatings[J]. Diam Relat Mater, 2002, 11(2): 1643–1648.
[12] GRADOWSKI M V, FERRARI A C, OHR R, et al. Resonant Raman characterisation of ultrathin nano-protective carbon layers for magnetic storage devices[J]. Surf Coat Technol, 2003, 174: 246–249.
[13] FERRARI A C, RBERTSON J. Resonant Raman spectroscopy of disordered, amorphous, and Diamond like carbon[J]. Phys Rev B, 2001, 64(1): 075414.
[14] AGER J W, ANDERS S, ANDERS A, et al. Effect of intrinsic growth stress on the Raman spectra of vacuum arc deposited amorphous carbon films[J]. Appl Phys Lett, 1995, 66: 3444–3448.
[15] BHATTACHARYYA S, LUBBE M, BRESSLER P R, et al. Structure of nitrogenated amorphous carbon films from NEXAFS[J]. Diamond Relat Mater, 2002, 11: 8–14.
[16] LI X W, KE P L, ZHENG H, et al. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study[J]. Appl Surf Sci, 2013, 273: 670–675. 
[17] CHHOWALLA M. Thick, well-adhered, highly stressed tetrahedral amorphous carbon[J]. Diamond Relat Mater, 2001, 10: 1011–1018. 
[18] CASIRAGHI C, FERRARI A C, OHR R, et al. Dynamic roughening of tetrahedral amorphous carbon[J]. Phys Rev Lett, 2003, 91: 226–231. 
[19] ZHONG M, ZHANG C H, LUO J B. Effect of substrate morphology on the roughness evolution of ultra thin DLC films[J]. Appl Surf Sci, 2008, 254: 6742–6747.   
[20] MA T B, HU Y Z. Effect of impact angle and substrate roughness on growth of diamond-like carbon films[J]. J Appl Phys, 2007, 101: 014901.
[21] NEUVILLE S, MATTHEWS A. A perspective on the optimisation of hard carbon and related coatings for engineering applications[J]. Thin Solid Films, 2007, 515: 6619–6623.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com