[1] CHEN B J, SUN X W, TAY B K, et al. Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film[J]. Appl Phys Lett, 2005, 86: 063506.
[2] FERRARI A C. Diamond-like carbon for magnetic storage disks[J]. Surf Coat Technol, 2004, 180: 190–194.
[3] LI D J, GURUZ M U, BHATIA C S, et al. Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems[J]. Appl Phys Lett, 2002, 81: 1113–1117.
[4] BRAND J, GADOW R, KILLINGER A. Application of diamond-like carbon coatings on steel tools in the production of precision glass components[J]. Surf Coat Technol, 2004, 180(2): 213–219.
[5] LETTINGTON A H. Applications of diamond-like carbon thin films[J]. Carbon, 1998, 36: 555–560.
[6] GRILL A, NGUYEN S, SAENGER K L. Field effect transistor using carbon based stress liner [P]. US Patent, 7851288. 2010–12–14.
[7] 李晓伟, 周毅, 孙丽丽, 等. 椭偏法表征四面体非晶碳薄膜的化学键结构[J]. 光学学报, 2012, 32: 1003–1005.
LI Xiaowei, ZHOU Yi, SUN Lili, et al. Acta Opt Sin (in Chinese), 2012, 32: 1003–1005.
[8] PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998: 89–110.
[9] FUJIWARA H. Spectroscopic Ellipsometry Principles and Applications[M]. Tokyo: Maruzen Co. Ltd Press, 2007: 81–87.
[10] 周毅, 吴国松, 代伟, 等. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度[J]. 物理学报, 2010, 59(2): 356–361.
ZHOU Yi, WU Guosong, DAI Wei, et al. Acta Phys Sin (in Chinese), 2010, 59(2): 356–361.
[11] SHEEJA D, TAY BK, LEONG KW, et al. Effect of film thickness on the stress and adhesion of diamond-like carbon coatings[J]. Diam Relat Mater, 2002, 11(2): 1643–1648.
[12] GRADOWSKI M V, FERRARI A C, OHR R, et al. Resonant Raman characterisation of ultrathin nano-protective carbon layers for magnetic storage devices[J]. Surf Coat Technol, 2003, 174: 246–249.
[13] FERRARI A C, RBERTSON J. Resonant Raman spectroscopy of disordered, amorphous, and Diamond like carbon[J]. Phys Rev B, 2001, 64(1): 075414.
[14] AGER J W, ANDERS S, ANDERS A, et al. Effect of intrinsic growth stress on the Raman spectra of vacuum arc deposited amorphous carbon films[J]. Appl Phys Lett, 1995, 66: 3444–3448.
[15] BHATTACHARYYA S, LUBBE M, BRESSLER P R, et al. Structure of nitrogenated amorphous carbon films from NEXAFS[J]. Diamond Relat Mater, 2002, 11: 8–14.
[16] LI X W, KE P L, ZHENG H, et al. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study[J]. Appl Surf Sci, 2013, 273: 670–675.
[17] CHHOWALLA M. Thick, well-adhered, highly stressed tetrahedral amorphous carbon[J]. Diamond Relat Mater, 2001, 10: 1011–1018.
[18] CASIRAGHI C, FERRARI A C, OHR R, et al. Dynamic roughening of tetrahedral amorphous carbon[J]. Phys Rev Lett, 2003, 91: 226–231.
[19] ZHONG M, ZHANG C H, LUO J B. Effect of substrate morphology on the roughness evolution of ultra thin DLC films[J]. Appl Surf Sci, 2008, 254: 6742–6747.
[20] MA T B, HU Y Z. Effect of impact angle and substrate roughness on growth of diamond-like carbon films[J]. J Appl Phys, 2007, 101: 014901.
[21] NEUVILLE S, MATTHEWS A. A perspective on the optimisation of hard carbon and related coatings for engineering applications[J]. Thin Solid Films, 2007, 515: 6619–6623.
|