首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
石墨烯负载纳米SnO2复合材料制备及其电化学性能
作者:  朱佳莹 杨绍斌 
单位:(辽宁工程技术大学材料科学与工程学院 辽宁 阜新 12300) 
关键词:石墨烯 复合材料 二氧化锡 电化学性能 
分类号:TM53
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.12
摘要:

 采用水热方法制备了纳米金属氧化物SnO2/石墨烯(RGO)复合材料,同时用相同工艺制备了纯SnO2与纯RGO作为对比。SnO2/RGO复合材料中SnO2均匀分布在RGO结构中,晶粒尺寸约为5 nm,与合成的单相SnO2相比晶粒尺寸显著减小。电化学性能测试表明,RGO、SnO2和SnO2/RGO的首次可逆容量分别为339.3、862.7和1 054.2 mA•h/g,50次循环后容量分别为198.5、306.2和977.8 mA•h/g。SnO2/RGO复合材料的可逆容量和循环稳定性比纯RGO和SnO2有显著增加。电化学性能的提高归因于RGO的加入显著减小SnO2尺寸,提高了材料导电性,同时有效阻止了SnO2团聚。

 A composite with nano-SnO2 and graphene (RGO) (i.e., SnO2/RGO) was prepared by a hydrothermal method. In the SnO2/RGO composite, SnO2 is uniformly distributed in the RGO structure, and the grain size is approximately 5 nm. Compared to the pure SnO2 synthesized, the grain size decreases significantly. The results of the electrochemical performance tests show that the reversible capacities of RGO, SnO2 and SnO2/RGO are 339.3, 862.7 and 1 054.2 mA•h/g, respectively. After 50 cycles, the capacities are 198.5, 306.2 and 977.8 mA•h/g, respectively. The reversible capacity and the cycle stability of SnO2/RGO composite are greater than those of RGO or SnO2 alone. The improvement of electrochemical performance is attributed to the fact that the addition of RGO reduces the size of SnO2, thus improving the conductivity of the material and effectively preventing the aggregation of SnO2 particles.

基金项目:
国家自然科学基金(51274119,21808095)资助项目
作者简介:
参考文献:

 [1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652?657.

[2] SONG L B, LI X H, WANG Z X, et al. Finite element analysis and thermal behavior of lithium ion cells during charge-discharge process[J]. J Funct Mater, 2013, 44 (8): 1153?1158.
[3] PALACÍN M R. Recent advances in rechargeable battery materials: a chemist’s perspective[J]. Chem Soc Rev, 2009, 38(9): 2565?2575.
[4] WINTER M, BRODD R J. What are batteries, fuel cells, and super capacitors[J]. Chem Rev, 2004, 104(10): 4245?4270.
[5] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928?935.
[6] 胡彬. 钛基钠离子电池负极材料制备与性能研究[D]. 上海: 上海交通大学, 2014.
HU Bin. Synthesis and modification of titanium-based anode materials for sodium ion batteries (in Chinese, dissertation). Shanghai: Shanghai Jiaotong University, 2014.   
[7] 李慧, 吴川, 吴锋, 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014, 72(1): 21?29.
LI Hui, WU Chuan, WU Feng, et al. Acta Chim Sin(in Chinese), 2014, 72(1): 21?29.
[8] LU Y C, MA C, ALVARADO J, et al. Electrochemical properties of tin oxide anodes for sodium-ion batteries[J]. J Power Sources, 2015, 284: 287?295.
[9] CHENG Y, HUANG J, LI J, et al. SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance[J]. J Alloy Compod, 2016, 658: 234?240.
[10] YU J, XIA Y. Facile synthesis of the SnO2 @OCNTs (open-tips carbon nano tubes) composite with superior cyclability for Li-ion batteries[J]. Electrochim Acta, 2014, 147: 720?725.
[11] PING Z, GUO A, DU D, et al. Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: A highly efficient anode material for lithium-ion batteries[J]. J Mater Chem, 2009, 19(20): 3253?3257.
[12] YUAN J, CHEN C, HAO Y, et al. SnO2 /polypyrrole hollow spheres with improved cycle stability aslithium-ion battery anodes[J]. J Alloy Compod, 2017, 691: 34?39.
[13] LIN Y, GUO X. Chemical modification of graphene and its applications[J]. Acta Chim Sin, 2014, 72: 277?288.
[14] MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett, 2011, 11(6): 2396?2399.
[15] 董伟, 杨绍斌, 梁冰, 等. 热还原氧化石墨的可逆储钠性能[J]. 硅酸盐学报, 2018, 46(5): 619?623.
DONG Wei, YANG Shaobin, LIANG Bing, et al. J Chin Ceram Soc, 2018, 46(5): 619?623.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com