首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ta2AlC–Ta4AlC3复合材料放电等离子烧结制备与力学性能
作者:马凤辰1 应国兵1 宿 琳1  晨1  鸿1 戴中华1  香2  乘1 
单位:(1. 河海大学力学与材料学院 南京 211100 2. 超轻材料与表面技术教育部重点实验室 哈尔滨工程大学 哈尔滨 150001) 
关键词:Ta2AlC–Ta4AlC3复合材料 放电等离子烧结 物相组成 力学性能 
分类号:TQ174
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.15
摘要:

 以Ta粉、Al粉、TaC粉末为原料,针对摩尔比n(Ta):n(Al):n(TaC)=1:1.4:1的体系额外加入质量分数分别为10%、20%、30%的TaC粉末,利用放电等离子烧结(SPS)法原位合成Ta2AlC陶瓷复合材料。结果表明:摩尔比为n(Ta):n(Al):n(TaC)=1:1.4:1的体系可以合成高纯度Ta2AlC陶瓷,并随着TaC含量的增加,体系中Ta4AlC3不断增多,表明Ta2AlC与TaC高温下发生反应转变成Ta4AlC3。SPS法可以制备出细晶Ta2AlC–Ta4AlC3复合材料,Ta4AlC3含量的变化可以显著改变材料的力学性能,添加20%TaC制备的Ta2AlC–Ta4AlC3复合材料力学性能最为突出,其弯曲强度、压缩强度、断裂韧性分别为753.84 MPa、1 029.55 MPa和7.65 MPa•m1/2,细晶强化和复合材料中同类的MAX第二相相互交叠强化是Ta2AlC–Ta4AlC3复合材料具备高力学性能的主要原因。

 Dense and bulk Ta2AlC matrix composites were synthesized by spark plasma sintering/in-situ reaction method using the mixture powers of Ta, Al and TaC as raw materials. The molar ratios of n(Ta):n(Al):n(TaC)=1:1.4:1 with excess TaC mass fraction of 0%, 10%, 20%, 30% were investigated. It is found that high-purity Ta2AlC ceramic can be fabricated by using the ratios of n(Ta):n(Al):n(TaC)=1:1.4:1, and excess TaC yields the formation of Ta4AlC3. Ta2AlC reacts with TaC at high temperature, resulting in forming Ta2AlC–Ta4AlC3 composite materials. The different excess contents of TaC can significantly change the mechanical properties. The Ta2AlC–Ta4AlC3 composited with 20% TaC addition exhibits the highest mechanical properties. The flexural strength, compressive strength and fracture toughness are 753.84 MPa, 1 029.55 MPa and 7.65 MPa•m1/2, respectively. And the interaction of refined crystalline strengthening and complementation strengthening of MAX phase are the key reasons for the high mechanical properties of Ta2AlC–Ta4AlC3 composites.

基金项目:
国家自然科学基金(11872171,11302068);总装预研基金;中央高校基本业务费(2018B17414,2018B46714);超轻材料与表面技术教育部重点实验室开放基金项目
作者简介:
参考文献:

 [1] BARSOUM M W. The Mn+1AXn Phases: A new class of solids: thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28(1): 201–281. 

[2] BARSOUM M W, EL-RAGHY T. The MAX Phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight[J]. Am Scientist, 2001, 89(4): 334–343.
[3] BARSOUM M W, RADOVIC M. Elastic and Mechanical Properties of the MAX Phases[J]. Annu Rev Mater Res, 2010, 41(41): 195–227.
[4] BARSOUM M W, RADOVIC M. Mechanical Properties of the MAX Phases[J]. Encyclopedia Mater Sci Technol, 2004, 160(s1): 1–16.
[5] DU Y L, SUN D M, HASHIMOTO H, et al. Bonding properties and bulk modulus of M4AlC3 (M = V, Nb, and Ta) studied by first-principles calculations[J]. Phys Status Solidi, 2009, 246(5): 1039–1043
[6] GUPTA S, FILIMONOV D, BARSOUM M W. Isothermal oxidation of Ta2AlC in air[J]. J Am Ceram Soc, 2010, 89(9): 2974–2976.
[7] LANE N J, NAGUIB M, PRESSER V, et al. First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3, and Ta2AlC[J]. J Raman Spectrosc, 2012, 43(7): 954–958.
[8] YEH C L, CHEN Y S. Effects of Al content on formation of TaC, Ta2C, and Ta2AlC by combustion synthesis with aluminothermic reactions[J]. Ceram Int, 2017, 43(17): 15659–15665.
[9] ETZKORN J, M ADE, H HILLEBRECHT. Ta3AlC2 and Ta4AlC3—Single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorg Chem, 2007, 46(4): 1410–1418.
[10] YEH C L, SHEN Y G. Effects of Al Content on formation of Ta2AlC by self-propagating high-temperature synthesis[J]. J Alloy Compd, 2009, 482(s1/2): 219–223.
[11] HU C F, ZHANG J, BAO Y W, et al. In-situ Reaction Synthesis and Decomposition of Ta2AlC [J]. Int J Mater Res, 2008, 99(1): 8–13. 
[12] HU C F, HE L F, ZHANG J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method[J]. J Eur Ceram Soc, 2008, 28(8): 679–1685
[13] 刘军芳, 傅正义, 王皓. 放电等离子烧结氮化铝透明陶瓷的研究[J]. 硅酸盐学报, 2004, 23(6): 12–14.
LIU Junfang, FU Zhengyi, WANG Hao. J Chin Ceram Soc, 2004, 23(6): 12–14.
[14] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEPcode [J].  J Phys Condens Matter, 2002, 14(11): 2717–2744.
[15] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie, 2005, 220(5/6): 567–570.
[16] EKLUND P, PALMQUIST J P, HOWING J, et al. Ta4AlC3: Phase determination, polymorphism and deformation[J]. Acta Mater, 2007, 55(14): 4723–4729.
[17] HU C, LIN Z, HE L, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method[J]. J Am Ceram Soc, 2010, 90(8): 2542–2548.
[18] MANOUN B, SAXENA S K, EL-RAGHY T, et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Appl Phys Lett, 2006, 88(20): 201902.
[19] HU C, LI F, HE L, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3[J]. J Am Ceram Soc, 2008, 91(7): 2258–2263.
[20] JIANG W, SHI L, WANG L, et al. In situ fabrication of TiC/Ti3Al/Ti2AlC composite by spark plasma sintering technology[J]. J Ceram Soc Jpn, 2010, 118(1382): 872–875.
[21] 卢雪飞, 梅炳初, 周卫兵, 等. 放电等离子制备Ti3AlC2/TiB2复合材料及性能[J]. 硅酸盐学报, 2007, 35(5): 648–652.
LU Xuefei, MEI Bingchu, ZHOU Weibing, et al. J Chin Ceram Soc, 2007, 35(5): 648–652. 
[22] 朱文彬. Ta2AlC陶瓷的制备与性能研究[D]. 武汉: 武汉理工大学, 2011.
ZHU Wenbin. Research on the synthesis and properties of Ta2AlC(in Chinese, dissertation), Wuhan: Wuhan University of Technology, 2011.
[23] GILBERT C J, BLOYER D R, BARSOUM M W, et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti[J]. Scripta Mater, 2000, 42(8): 761–767.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com