首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硫酸盐还原菌对碳酸钙结晶过程的影响
作者:  吴文涛 周跃飞 岳正波   
单位:(合肥工业大学资源与环境工程学院 合肥 230009) 
关键词:硫酸盐还原菌 胞外聚合物 微生物溶解性产物 方解石 
分类号:P76; O781
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.16
摘要:

 通过气体扩散法模拟碳酸钙结晶过程,以硫酸盐还原菌为海洋微生物代表,考察了微生物溶解性有机物、死细胞和胞外聚合物等不同生物组分的影响。利用X射线衍射仪、Fourier红外光谱仪、场发射扫描电子显微镜、场发射透射电子显微镜及同步热分析仪对获取的结晶产物进行表征和综合分析。结果表明:微生物组分促进了碳酸钙由无定形晶相向方解石的转化,而且不同微生物成分对方解石的形貌产生不同影响;微生物成分与钙离子能够发生有效的吸附或螯合作用,使微生物成分附近出现局部过饱和现象,而母液中Ca2+浓度降低,从而促进了单晶方解石的形成。研究结果有助于理解微生物对碳酸钙结晶的影响机制,为减少海洋设备表面结晶提供理论基础。

 Gas diffusion method was used to simulate the crystallization process of calcium carbonate and sulfate reducing bacteria was used as the representative marine microorganism. Effects of soluble microbial products, dead cells and extracellular polymeric substances were investigated. The products were characterized and analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and synchronous thermal analysis. The results indicated that microorganisms accelerated the growth from amorphous crystal to calcite and influences of morphology by different microbial components were significantly different. Analysis results showed that biological components promoted the generation of calcium carbonate from amorphous to calcite. Simultaneously, the morphologies were related to the organic components. Calcium ions can be effectively adsorbed or chelated by organic components, which leads to partial supersaturation near the microbial composition and the Ca2+ concentration of solution decreased. Ultimately, microbial composition promoted the formation of single crystal calcite. It was expected to contribute to the understanding of the microorganism influence mechanism on calcium carbonate crystallization process, and provide a certain theoretical basis for reducing the surface crystallization of marine equipment.

基金项目:
国家重点研发计划项目(2016YFC1400605);国家自然科学基金面上项目(41372046)
作者简介:
参考文献:

 [1] 舒俊林, 谢鑫, 李天深, 等. 浅谈近岸海域水质自动监测系统的质量保证与质量控制[J]. 环境科学与管理, 2012, 37(s1): 95–98.

SHU Junlin, XIE Xin, LI Tianshen, et al. Environ Sci Manage(in Chinese), 2012, 37(s1): 95–98.
[2] 魏仁超, 李焰, 许风玲, 等. SRB腐蚀与生物矿化作用的研究进展[J]. 材料开发与应用, 2013, 28(5): 101–108.
WEI Renchao, LI Yan, XV Fengling, et al. Dev Appl Mater(in Chinese), 2013, 28(5): 101–108.
[3] ZHANG G A, YUN, YANG L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corros Sci, 2014, 86(86): 202–212.
[4] XU Y Z, YANG L J, HE L M, et al. The monitoring of galvanic corrosion behaviour caused by mineral deposit in pipeline working conditions using ring form electronic resistance sensor system[J]. Brit Corros J, 2016, 51(8): 606–620.
[5] 李延雷, 刘静茹. 沿海电厂防盐雾腐蚀的措施[J]. 价值工程, 2017(29): 218–219.
LI Yanlei, LIU Jingru. Value Eng(in Chinese), 2017(29): 218–219.
[6] BRASIER M. Why do lower plants and animals biomineralize?[J]. Paleobiology, 1986, 12(3): 241–250.
[7] WEINER S, DOVE P M. An overview of biomineralization processes and the problem of the vital effect[J]. Rev Miner Geochem, 2003, 54(1): 1–29.
[8] 方毅, 刘继伟, 谷庆宝, 等. 生物矿化在环境保护方面的应用[J]. 硅酸盐通报, 2017, 36(4): 1209–1215.
FANG Yi, LIU Jiwei, GU Qingsheng, et al. Bull Chin Ceram Soc (in Chinese), 2017, 36(4): 1209–1215.
[9] ADDADI L, RAZ S, WEINER S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization[J]. Adv Mater, 2003, 15(12): 959–970.
[10] CARTWRIGHT J H, ChECA A G, GALE J D, et al. Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there?[J]. Angew Chem Int Ed, 2012, 51(48): 11960–11970.
[11] MA Y, QIAO L, FENG Q. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls[J]. Acs Biomater Sci Eng C, 2012, 32(7): 1963–1970.
[12] MANN S. The chemistry of form[J]. Angew Chem Int Edit, 2000, 39(19): 3393–3496.
[13] ZhOU G T, GUAN Y B, YAO Q Z, et al. Biomimetic mineralization of prismatic calcite mesocrystals: Relevance to biomineralization[J]. Chem Geol, 2010, 279(3): 63–72.
[14] LI J Y. Research on screening and physiological characteristics of sulfate reducing bacteria[J]. J Anhui Agri Sci, 2010, 38(29): 16092–16093.
[15] TOURNEY J, NGWENYA B T. Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism[J]. Chem Geol. 2009, 262(3): 138–146.
[16] TOURNEY J, NGWENYA B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chem Geol, 2014, 386: 115–132.
[17] LIU H, GU T, ASIF M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros Sci, 2017, 114: 102–111.
[18] TENG H, HU Q, LIAN B, et al. Carbonate biomineralization induced by soil bacterium Bacillus megaterium[J]. Geochim Cosmochim AC, 2006, 70(22): 5522–5535.
[19] ZHOU G T, ZhENG Y F. On the direction and magnitude of oxygen isotope fractionation between calcite and aragonite at thermodynamic equilibrium[J]. Aquat Geochem, 2006, 12(3): 239–268.
[20] ARGüELLES-MONAL W, PENICHE-COVAS C. Study of interpolyelectrolyte reaction between chitosan and carboxymethyl cellulose[J]. Die Makromol Chem, Rapid Commun, 2003, 9(10): 693–697.
[21] LIANG Z, LI W, YANG S, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626–632.
[22] WANG Z, WU Z, YIN X, et al. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization[J]. J Membr Sci, 2008, 325(1): 238–244.
[23] ANDERSEN F A, BRE?EVI? L, BEUTER G, et al. Infrared spectra of amorphous and crystalline calcium carbonate[J]. Acta Chem Scand, 1991, 45(10): 1018–1024.
[24] PRYWER J, TORZEWSKA A, PLOSIńSKI T. Unique surface and internal structure of struvite crystals formed by Proteus mirabilis[J]. Urol Res, 2012, 40(6): 699–707.
[25] LI Y, SUN H, MA X, et al. Extracellular polysaccharides mediate pilus retraction during social motility of myxococcus xanthus[J]. Proc Nat Acad Sci USA, 2003, 100(9): 5443–5446.
[26] NANCOLLAS G H, MATTHEWS J L. Biological Mineralization and Demineralization[M]. Berlin: Springer-Verlag, 1982: 328–341.
[27] YOREO J J D, VELILOV P G. Principles of crystal nucleation and growth[J]. Rev Miner Geochem, 2003, 54(1): 57–93.
[28] GALKIN O, CHEN K, NAGEL R L, et al. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin[J]. Proc Nat Acad Sci USA, 2002, 99: 8479–8483.
[29] DE-YOREO J J, GILBERT P U, SOMMERDIJK N A, et al. Crystallization by particle attachment in synthetic, biogenic and geologic environments[J]. Science, 2015, 349(6247): aaa6760.
[30] LOCHHEAD M J, AND S R L, VOGEL V. Assessing the role of Interfacial electrostatics in oriented mineral nucleation at charged organic monolayers[J]. J Phys Chem B, 1997, 101(50): 10821–10827. 
[31] GRASSMANN O, GERD-MüLLER A, LOBMANN P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix:  relevance to biomineralization[J]. Chem Mater, 2008, 14(14): 4530–4535.
[32] WANG J, XU Y, ZhAO Y, et al. Morphology and crystalline characterization of abalone shell and mimetic mineralization[J]. J Cryst Growth, 2003, 252(1): 367–371.
[33] RODRIGUEZ-NAVARRO C, JTMENEZ-LOPEZ C, RODRIGUEZ- NAVARRO A, et al. Bacterially mediated mineralization of vaterite[J]. Geochim Cosmochim A, 2007, 71(5): 1197–1213.
[34] BUTLER M F, GLASER N, WEAVER A C, et al. Calcium carbonate crystallization in the presence of biopolymers[J]. Cryst Growth Des, 2006, 6(3): 781–794.
[35] DONOT F, FONTANA A, BACCOU J C, et al. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction[J]. Carbohydr Polym, 2012, 87(2): 951–962.
[36] PRYWER J, TORZEWSKA A, PLOCIńSKI T. Unique surface and internal structure of struvite crystals formed by Proteus mirabilis[J]. Urol Res, 2012, 40(6): 699–707.
[37] XU A W, ANYONIETTI M, YU S H, et al. Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures[J]. Adv Mater, 2008, 20(7): 1333–1338.
[38] WEINER S, LOWENSTAMR H A. On biomineralization[M]. London: Oxford University Press, 1989: 119–130. 
[39] BELCHER A M, WU X H, CHRISTENSEN R J, et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins[J]. Nature, 1996, 381(6577): 56–58.
[40] AIZENBERG J, HANSON J, KOETZLE T F, et al. Control of macromolecule distribution within synthetic and biogenic single calcite crystals[J]. J Am Chem Soc, 1997, 119(5): 881–886.
[41] CANTAERT B, KIM Y Y, LUDWIG H, et al. Think positive: phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology[J]. Adv Funct Mater, 2012, 22(5): 907–915.
[42] LENDERS J J M, ALTAN C L, BOMANS P H H, et al. A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles[J]. Cryst Growth Des, 2014, 14(11): 5561–5568. 
[43] DRIESSCHE A E S V, BENNING L G, RODRIGUEZ-BLANCO J D, et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation[J]. Science, 2012, 336(6007): 69–72.
[44] BAUMGARTNER J, DEY A, BOMANS P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat Mater, 2013, 12(4): 310–314.
[45] VOORHEES P W. The theory of ostwald ripening[J]. J Stat Phys, 1985, 38(1/2): 231–252.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com