首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硅酸盐矿物储热特征及其复合相变材料
作者:谢宝珊1 李传常1  波1 赵新波1  荐1 陈中胜2 
单位:(1. 长沙理工大学能源与动力工程学院 长沙 410114  2. 东华理工大学 核资源与环境国家重点实验室培育基地 南昌 330013) 
关键词:硅酸盐矿物 储热特征 复合相变材料 
分类号:TB33
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.21
摘要:

 利用硅酸盐矿物储热特征装载相变功能体,制备定形复合相变材料是获得优良储热性能、低制备成本复合储热材料的途径之一。从导热性能与储存空间两个方面概述了硅酸盐矿物的储热特征;对凹凸棒石、硅藻土、埃洛石、高岭石、蒙脱石、珍珠岩、蛭石、蛋白石、硅灰石等硅酸盐矿物基复合相变材料进行了综述;介绍了其在建筑节能以及其他领域如热红外隐身技术中的应用;最后指出,制备储热容量高、不易泄露的硅酸盐矿物基复合相变材料并扩大其应用范围是今后的研究重点。

 One way of obtaining composite phase change materials (PCMs) with excellent thermal energy storage performance and low preparation cost is to utilize the thermal storage characteristics of silicate minerals. The thermal storage characteristics of silicate minerals were summarized based on their thermal conductivity and storage space. Recent development on silicate mineral-based composite PCMs with attapulgite, diatomite, halloysite, kaolinite, montmorillonite, perlite, vermiculite, opal, and wollastonite were represented. The application in building energy conservation and other filed like thermal infrared camouflages was introduced. It is indicated that preparing silicate-mineral based composite PCMs with high thermal storage capacity and non-leakage and enlarging its application range could be a challenge for the future development.

 
基金项目:
国家自然科学基金(51504041,51874047);长沙市杰出创新青年培养计划;湖南省自然科学基金(2016JJ3009);江西省重点研发计划(20171BBH80021);核资源与环境国家重点实验室培育基地开放基金(NRE1403);“清洁能源与智能电网”湖南省2011协同创新中心项目
作者简介:
参考文献:

 [1] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Appl Energy, 2016, 165: 472–510.

[2] 陈立萌, 朱孝钦, 周新涛, 等. 多孔基复合相变材料的制备与研究进展[J]. 材料导报, 2016, 30(7): 127–132.
CHEN L, ZHU X, ZHOU X, et al. Mater Rev(in Chinese), 2016, 30(7): 127–132.
[3] QIAN T, LI J. Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage[J]. Energy, 2018, 142: 234–249.
[4] KARAIPEKLI A, BI ER A, SAR? A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy Convers Manage, 2017, 134: 373–381.
[5] SARI A. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties[J]. Energy Convers Manage, 2004, 45(13/14): 2033–2042.
[6] LIU S, YANG H. Porous ceramic stabilized phase change materials for thermal energy storage[J]. RSC Adv, 2016, 6(53): 48033–48042.
[7] CHEN P, GAO X, WANG Y, et al. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage[J]. Sol Energy Mater Sol Cells, 2016, 149: 60–65.
[8] LI C, YANG H. Expanded vermiculite/paraffin composite as a solar thermal energy storage material[J]. J Am Ceram Soc, 2013, 96(9): 2793–2798.
[9] LI M, WU Z, KAO H. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials[J]. Appl Energy, 2011, 88(9): 3125–3132.
[10] FERRER G, SOL A, BARRENECHE C, et al. Review on the methodology used in thermal stability characterization of phase change materials[J]. Renew Sust Energy Rev, 2015, 50: 665–685.
[11] LIU Y, YANG Y. Form-stable phase change material based on Na2CO3•10H2O-Na2HPO4•12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide[J]. Renew Energy, 2018, 115: 734–740.
[12] LI C, FU L, OUYANG J, et al. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage[J]. Appl Clay Sci, 2015, 115: 212–220.
[13] LI C, OUYANG J, YANG H. Novel sensible thermal storage material from natural minerals[J]. Phys Chem Miner, 2013, 40(9): 681–689.
[14] LI C, FU L, OUYANG J, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Sci Rep, 2013, 3: 1908(1–8).
[15] LI M, WU Z, KAO H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Sol Energy Mater Sol Cells, 2011, 95(8): 2412–2416.
[16] MIN L, WU Z, KAO H, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Convers Manage, 2011, 52(11): 3275–3281.
[17] QIAN T, LI J, MA H, et al. Adjustable thermal property of polyethylene glycol/diatomite shape‐stabilized composite phase change material[J]. Polym Compos, 2016, 37(3): 854–860.
[18] QIAN T, LI J, MIN X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage[J]. J Mater Chem A, 2015, 3(16): 8526–8536.
[19] SONG S, DONG L, CHEN S, et al. Stearic–capric acid eutectic/activated-attapulgiate composite as form-stable phase change material for thermal energy storage[J]. Energy Convers Manage, 2014, 81: 306–311.
[20] TOMI? Z P, AŠANIN D, ANTI?-MLADENOVI? S, et al. NIR and MIR spectroscopic characteristics of hydrophilic and hydrophobic bentonite treated with sulphuric acid[J]. Vib Spectrosc, 2012, 58: 95–103.
[21] ZHAO Y, THAPA S, WEISS L, et al. Phase change heat insulation based on wax-clay nanotube composites[J]. Adv Eng Mater, 2014, 16(11): 1391–1399.
[22] XAVIER K C M, SANTOS M R M C, OSAJIMA J A, et al. Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition[J]. Mater Res, 2014, 17(8): 3–8.
[23] LIANG W, CHEN P, SUN H, et al. Innovative spongy attapulgite loaded with n-carboxylic acids as composite phase change materials for thermal energy storage[J]. RSC Adv, 2014, 4(73): 38535–38541.
[24] YANG D, PENG F, ZHANG H, et al. Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage[J]. Appl Clay Sci, 2016, 126: 190–196.
[25] FU X, LIU Z, XIAO Y, et al. Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage[J]. Energy Buildings, 2015, 104: 244–249.
[26] DENG Y, LI J, QIAN T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. J Mater Sci Technol, 2017, 33(2): 198–203.
[27] OUYANG J, ZHOU Z, ZHANG Y, et al. High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment[J]. Appl Clay Sci, 2014, 101: 16–22.
[28] ZHAO Y, THAPA S, WEISS L, et al. Phase change insulation for energy efficiency based on wax-halloysite composites[J]. IOP Conf Series: Mater Sci Eng, 2014, 64(1): 012045.
[29] 陆现彩, 尹琳, 赵连泽, 等. 常见层状硅酸盐矿物的表面特征[J]. 硅酸盐学报, 2003, 31(1): 60–65.
LU X,iancai YIN Lin, ZHAO Lianze, et al. J Chin Ceram Soc, 2003, 31(1): 60–65.
[30] DUARTE-SILVA R, VILLA-GARC A M A, RENDUELES M, et al. Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents[J]. Appl Clay Sci, 2014, 90: 73–80.
[31] ALMANZA R, CLAUDIA LOZANO M. Mechanical and thermal tests of a bentonite clay for use as a liner for solar ponds[J]. Sol Energy, 1990, 45(4): 241–245.
[32] PENG K, ZHANG J, YANG H, et al. Acid-hybridized expanded perlite as a composite phase-change material in wallboards[J]. RSC Adv, 2015, 5(81): 66134–66140.
[33] SUN D, WANG L, LI C. Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material[J]. Mater Lett, 2013, 108: 247–249.
[34] SHKATULOV A, RYU J, KATO Y, et al. Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat[J]. Energy, 2012, 44(1): 1028–1034.
[35] MAQUEDA C, ROMERO A S, MORILLO E, et al. Effect of grinding on the preparation of porous materials by acid-leached vermiculite[J]. J Phys Chem Solids, 2007, 68(5-6): 1220–1224.
[36] DENG Y, LI J, QIAN T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J]. Chem Eng J, 2016, 295: 427–435.
[37] TANG Q G, LIANG J S, MENG J P, et al. Effect of heat treatment on properties of mineral attapulgite[J]. Adv Mater Res, 2009, 58(58): 41–46.
[38] WEN R, ZHANG X, HUANG Z, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage[J]. Sol Energy Mater Sol C, 2018, 178: 273–279.
[39] QIAN T, LI J, YONG D. Pore structure modified diatomite-supported PEG composites for thermal energy storage[J]. Sci Rep, 2016, 6: 32392.
[40] 张东. 多孔矿物介质对有机相变材料导热性能的影响[J]. 矿物岩石, 2007, 27(3): 12–16.
ZHANG Dong. J Miner Petrol(in Chinese), 2007, 27(3): 12–16.
[41] LI M, WU Z. Preparation and performance of highly conductive phase change materials prepared with paraffin, expanded graphite, and diatomite[J]. Int J Green Energy, 2011, 8(1): 121–129.
[42] QIN Y, LENG G, YU X, et al. Sodium sulfate–diatomite composite materials for high temperature thermal energy storage[J]. Powder Technol, 2015, 282(SEP): 37–42.
[43] FU X, LIU Z, WU B, et al. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method[J]. J Therm Anal Calorim, 2015, 123(2): 1173–1181.
[44] TANG F, SU D, TANG Y, et al. Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity[J]. Sol Energy Mater Sol Cells, 2015, 141: 218–224.
[45] MEI D, ZHANG B, LIU R, et al. Preparation of stearic acid/halloysite nanotube composite as form-stable PCM for thermal energy storage[J]. Int J Energy Res, 2011, 35(9): 828–834.
[46] MEI D, ZHANG B, LIU R, et al. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage[J]. Sol Energy Mater Sol Cells, 2011, 95(10): 2772–2777.
[47] ZHANG J, ZHANG X, WAN Y, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material[J]. Sol Energy, 2012, 86(5): 1142–1148.
[48] LIANG W, WU Y, SUN H, et al. Halloysite clay nanotubes based phase change material composites with excellent thermal stability for energy saving and storage[J]. RSC Adv, 2016, 6(24): 19669–19675.
[49] MICHOT A, SMITH D S, DEGOT S, et al. Thermal conductivity and specific heat of kaolinite: Evolution with thermal treatment[J]. J Eur Ceram Soc, 2008, 28(14): 2639–2644.
[50] SONG S, DONG L, ZHANG Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385–389.
[51] LIU S, YANG H. Stearic acid hybridizing coal–series kaolin composite phase change material for thermal energy storage[J]. Appl Clay Sci, 2014, 101: 277–281.
[52] LIU S, YANG H. Composite of coal-series kaolinite and capric–lauric acid as form-stable phase-change material[J]. Energy Technol, 2015, 3(1): 77–83.
[53] WEI X, WANG J. Study on application properties of modified montmorillonite as phase change material for energy storage[J]. Adv Polym Tech, 2016, 37(3): 21731.
[54] LI M, WU Z. A review of intercalation composite phase change material: Preparation, structure and properties[J]. Renew Sust Energy Rev, 2012, 16(4): 2094–2101.
[55] WANG Y, ZHENG H, FENG H X, et al. Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials[J]. Energy Buildings, 2012, 47(47): 467–473.
[56] JEONG S-G, JIN CHANG S, WE S, et al. Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets[J]. Sol Energy Mater Sol Cells, 2015, 139: 65–70.
[57] FANG X, ZHANG Z, CHEN Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials[J]. Energy Convers Manage, 2008, 49(4): 718–723.
[58] SARIER N, ONDER E, OZAY S, et al. Preparation of phase change material–montmorillonite composites suitable for thermal energy storage[J]. Thermochim Acta, 2011, 524(1/2): 39–46.
[59] 刘磊, 彭犇, 邱桂博, 等. 不同载体的Na2SO4•10H2O基定形相变材料的制备和热性能研究[J]. 人工晶体学报, 2017, 46(12): 2374–2379.
LIU Lei, PENG Ben, QIU Guibo, et al. J Synth Cryst(in Chinese), 2017, 46(12): 2374–2379.
[60] LIU J, LI F, GONG X, et al. Experimental research in the phase change materials based on paraffin and expanded perlite[J]. Phase Transit, 2018: 1–7.
[61] ALKAN M, DOGAN M. Adsorption of copper(II) onto perlite[J]. J Colloid Interf Sci, 2001, 243(2): 280–291.
[62] RAMAKRISHNAN S, WANG X, SANJAYAN J, et al. Heat transfer performance enhancement of paraffin/expanded perlite phase change composites with graphene nano-platelets [J]. Energy Procedia, 2017, 105: 4866–4871.
[63] GUAN W, LI J, QIAN T, et al. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers[J]. Chem Eng J, 2015, 277: 56–63.
[64] SUVOROV S A, SKURIKHIN V V. Vermiculite — a promising material for high-temperature heat insulators [J]. Refract Ind Ceram, 2003, 44(3): 186–193.
[65] XU B, MA H, LU Z, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites[J]. Appl Energy, 2015, 160: 358–367.
[66] DENG Y, LI J H, QIAN T T, et al. Polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials for thermal energy storage[J]. Mater Sci Forum, 2016, 847: 39–45.
[67] SUN Z, KONG W, ZHENG S, et al. Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials[J]. Sol Energy Mater Sol Cells, 2013, 117: 400–407.
[68] XU D, YANG H. Wollastonite hybridizing stearic acid as thermal energy storage material[J]. Funct Mater Lett, 2014, 7(6): 1440011.
[69] ISKANDAR F, HIKMAH U, STAVILA E, et al. Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO)[J]. RSC Adv, 2017, 7(83): 52391–52397.
[70] LI C, XIE B, CHEN J, et al. H2O2-microwave treated graphite stabilized stearic acid as a composite phase change material for thermal energy storage[J]. RSC Adv, 2017, 7(83): 52486–52495.
[71] FANG X, ZHANG Z. A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials[J]. Energy Buildings, 2006, 38(4): 377–380.
[72] XU B, LI Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Appl Energy, 2013, 105(2): 229–237.
[73] LI X, CHEN H, LIU L, et al. Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage[J]. Sol Energy, 2016, 137: 179–188.
[74] 陈新德, 杨丹, 彭芬, 等. 相变储能调温内墙涂料[P]. CN Patent, 105062241B. 2015–08–25.
[75] KARAIPEKLI A, SAR? A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Sol Energy, 2009, 83(3): 323–332.
[76] KONG X, YAO C, JIE P, et al. Development and thermal performance of an expanded perlite-based phase change material wallboard for passive cooling in building[J]. Energy Buildings, 2017, 152: 547–557.
[77] 魏亚星, 胡江华, 刘珩, 等. 石蜡成分对红外隐身性能的影响[J]. 兵器材料科学与工程, 2011, 34(6): 30–32.
WEI Yaxing, HU Jianghua, LIU Heng, et al. Ordnance Mater Sci Eng(in Chinese), 2011, 34(6): 30–32.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com