首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
双子季铵盐对聚羧酸减水剂抗泥性能的影响
作者:张光华1  爽1  策1 3 崔鸿跃2 
单位:(1. 陕西科技大学 陕西省轻化工助剂重点实验室 西安 710021 2. 山西省运城市泓翔建材有限公司 山西 运城 044000 3. 陕西科技大学 陕西省轻化工助剂化学与技术协同创新中心 西安 710021) 
关键词:双子季铵盐 聚羧酸减水剂 抗泥剂 蒙脱土 抗泥性能 
分类号:TU528.042
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.04
摘要:

 针对含泥量对水泥浆体的负面影响,以三甲胺(或三乙胺)与1, 3-二溴丙烷作为反应物,通过季铵化反应制备出短链双子季铵盐抗泥剂(三甲胺型标记为G-KN1,三乙胺型标记为G-KN2),将其与聚羧酸盐减水剂RS-1复配以增强水泥浆体的抗泥效果。抗泥剂G-KN1和G-KN2的分子结构采用FT-IR和1H NMR进行测定。抗泥剂和减水剂复配体系的抗泥效果通过测定水泥净浆流动度进行评价。同时,综合运用X射线衍射和总有机碳(TOC)表征手段,考察了抗泥剂和减水剂复配体系对水泥分散和吸附性能的影响。结果表明,当蒙脱土的含量为2%或3%时,G-KN1和G-KN2的加入均可明显提高水泥的净浆流动度,并能保持良好的稳定性,且G-KN2表现出更优异的抗泥性能。

 To eliminate the negative influence of clay content on cement paste, gemini quaternary ammonium anti-clay agent with short bridging chains was fabricated via quaterisation reaction between trimethylamine (or triethylamine) and 1, 3-dibromopropane (G-KN1 for trimethylamine and G-KN2 for triethylamine). This agent was compounded with polycarboxylate water reducing agent RS-1 to enhance the anti-clay properties of cement paste. The molecular structure of G-KN1 and G-KN2 was characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance. The anti-clay properties of the compounded system was evaluated by the measurement of fluidity of cement paste. Also, the dispersion and adsorption properties of the compounded system were investigated by X-ray diffraction and total organic carbon analysis. G-KN1 and G-KN2 can improve the fluidity and G-KN2 can improve the fluidity and stability of cement paste when the content of montmorillonite is 2% or 3%. G-KN2 has a better anti-clay performance, compared to G-KN1.

基金项目:
国家自然科学基金(31670596);新型聚羧酸盐减水剂的研发 (SHX20160305)。
作者简介:
参考文献:

 [1] 陈友治, 张迈, 董瑀. 磺化木质素对蒙脱土吸附聚羧酸减水剂的抑制作用及机理[J]. 硅酸盐学报, 2018, 46(2): 212–217. 

CHEN Youzhi, ZHANG Mai, DONG Yu. J Chin Ceram Soc, 2018, 46(2): 212–217.
[2] NG S, PLANK J. Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers[J]. Cem Concr Res, 2012, 42(6): 847–854.
[3] 张栓红, 张明, 贾吉堂. 陶瓷减水剂研究进展[J]. 硅酸盐通报, 2013(4): 677–682.
ZHANG Shuanhong, ZHANG Ming, JIA Jitang. Bull Ceram Soc(in Chinese), 2013(4): 677–682. 
[4] YAMADA K, OGAWA S, HANEHARA S. Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J]. Cem Concr Res, 2001, 31(3): 375–383.
[5] 王子明, 吴昊, 徐莹, 等. 黏土对聚羧酸减水剂应用性能的抑制机理[J]. 建筑材料学报, 2014, 17(2): 234–238.
WANG Ziming, WU Hao. XU Ying, et al. J Build Mater (in Chinese), 2014, 17(2): 234–238. 
[6] ZHAO L, GUO X, LIU Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127: 255–269.
[7] 刘磊, 张光华, 孟刚, 等. 泥土对聚羧酸减水剂影响机理及研究现状[J]. 商品混凝土, 2016(3): 27–29. 
LIU Lei, ZHANG Guanghua, MENG Gang, et al Comm Concr (in Chinese), 2016(3): 27–29.
[8] 钟志强. 助剂改善聚羧酸减水剂抗泥性能研究[D]. 重庆大学, 2016.
ZHONG Zhiqiang. Study on the Additives of the Anti-Clay to Improve the Performance of Polycarboxylate Superplasticizer[D]. Chongqing University, 2016. (in Chinese)
[9] 董军. 阳离子聚合物和双季铵盐粘土稳定剂的合成及性能研究[D]. 中国海洋大学, 2009.
DONG Jun. Synthesis and properties of cationic polymers and diquaternary ammonium clay stabilizers[D]. Ocean University of China, 2009. (in Chinese)
[10] 王姗姗, 张健, 朱玥珺, 等. 小分子表面活性剂作为牺牲剂降低聚合物吸附损失的研究[J]. 化学研究与应用, 2017, 29(7): 974–979. 
WANG Wei, ZHANG Jian, ZHU Xi, et al. Chem Res Appl  (in Chinese), 2017, 29(7): 974–979.
[11] 王林龙. 抑制粘土对聚羧酸减水剂负效应的添加剂及其作用机  理[D]. 重庆大学, 2015.
WANG Lin-long. Additive and Mechanism With the Suppression of Clay Negative Effects on Polycarboxylate Superplasticizer[D]. Chongqing University, 2015. (in Chinese)
[12] PLANK J, SACHSENHAUSER B. Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution[J]. Cem Concr Res, 2009, 39(1): 1–5.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com