[1] NICHOLS R J, SENN R K. Direct extrusion of polymer latex emulsions[J]. J Rheol, 1982, 26(1): 83–83.
[2] OHAMA Y. Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology[M]. Noyes Publications, 1995.
[3] WAGNER H B. Polymer-modified hydraulic cements[J]. Ind Eng Chem Prod Res Dev, 1965, 4(3): 191–6.
[4] MA H Y, LI Z J. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Constr Build Mater, 2013, 47: 579–587.
[5] OHAMA Y. Polymer-based admixture[J]. Cem Concr Compos, 1998, 20(2): 189–212.
[6] OHAMA Y. Principle of latex modification and some typical properties of latex modified mortars and concretes[J]. ACI Mater J, 1987, 84(6): 511–518.
[7] SAKAI E, SUGITA J. Composite mechanism of polymer modified cement[J]. Cem Concr Res, 1995, 25(1): 127–135.
[8] URBAN D, TAKAMURA K. Polymer Dispersions and Their Industrial Applications[M]. Weinheim: Wiley-VCH Verlag GmbH, 2002.
[9] ZHANG Y R, KONG X M. Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials[J]. Constr Build Mater, 2014, 53: 392–402.
[10] KONG X M, WU C E, ZHANG Y R, et al. Polymer modified mortar with gradient polymer distribution: preparation, permeability, and mechanical behavior[J]. Constr Build Mater, 2013, 38: 195–203.
[11] BEELDENS A, VAN GEMERT D, SCHORN H, et al. From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete[J]. Mater Struct, 2005, 38: 601–607.
[12] SU Z, SUJATA K, BIJEN J M, et al. The Evolution of the Microstructure in Styrene Acrylate Polymer-Modified Cement Pastes at the Early stage of Cement Hydration[J]. Adv Cem Based Mater, 1996, 3: 87–93.
[13] WANG R, MA D X, WANG P M, et al. Study on waterproof mechanism of polymer modified cement mortar[J]. Mag Concr Res, 2015, 67(18): 972–979.
[14] KEDDIE J L, MEREDITH P, JONES R A L, et al. Kinetics of film formation in acrylic latices studied with multiple-angle-of-incidence ellipsometry and environmental SEM[J]. Macromolecules, 1995, 28(8): 2673–2682.
[15] LU Z C, KONG X M, ZHANG C Y, et al. Effect of polymer latexes with varied glass transition temperature on cement hydration[J]. J Appl Polym Sci, 2017, 134(36): 45264.
[16] 阎培渝, 覃肖, 杨文言. 大体积补偿收缩混凝土中钙矾石的分解与二次生成[J]. 硅酸盐学报, 2000, 28(4): 319–324.
Yan Peiyu, QIN Xiao, YANG Wenyan. J Chin Ceram Soc, 2000, 28(4): 319–324.
[17] 马保国, 温小栋, 潘伟, 等. 蒸养温度与水化热协同下混凝土热稳定性研究[J]. 硅酸盐通报, 2007, 26(20): 237–241.
MA Baoguo, WEN Xiaodong, PAN Wei, et al. Bull Chin Ceram Soc (in Chinese), 2007, 26(20): 237–241.
[18] ALHOZAIMY A, JAAFAR M S, NEGHEIMISH A. Properties of high strength concrete using white and dune sands under normal and autoclaved curing[J]. Constr Build Mater, 2012, 27(1): 218–222.
[19] RAMLI M, AKHAVAN A. Effects of polymer modification on the permeability of cement mortars under different curing conditions: A correlational study that includes pore distributions, water absorption and compressive strength[J]. Constr Build Mater, 2012, 28: 561–570.
[20] OHAMA Y, MIYAKE M, NOTOYA K. Proceedings of the Second International Conference on Concrete Technology for Developing Countires[C]. El-Fateh University, Tripoli, 1986.
[21] SILVA D, JOHN V M, RIBEIRO J L D, et al. Pore size distribution of hydrated cement pastes modified with polymers[J]. Cem Concr Res, 2001, 31(8): 1177–1184.
[22] ALIGIZAKI K. Pore structure of cement-based materials: Testing, interpretation and requirements (Modern concrete technology series (E. & F.N. Spon)), Abingdon [England]; New York: Taylor & Francis, 2006.
[23] BAZANT Z P, KAPLAN M F. Concrete at High Temperatures[M]. Longman —Addison-Wesley, London, 1996.
[24] NAUS N J. A Compilation of Elevated Temperature Concrete Material Property Data and Information for Use in Assessments of Nuclear Power Plant Reinforced Concrete Structures[S]. NUREG/CR-7031 ORNL/TM-2009/175, Nuclear Regulatory Commission, U.S, 2010.
[25] MA S W, YU T, WANG Y B, et al. Phase Evolution of Oil Well Cements with Nano-Additive at Elevated Temperature/Pressure[J]. Aci Mater J, 2016, 113(5): 571–578.
[26] VYDRA V, VODAK F, KAPICKOVA O. Effect of temperature on porosity of concrete for nuclear-safety structures[J]. Cem Concr Res, 2001, 31(7): 1023–1026.
[27] WANG R, WANG P M. Formation of hydrates of calcium aluminates in cement pastes with different dosages of SBR powder[J]. Constr Build Mater, 2011, 25(2): 736–741.
|