首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高强高模PVA纤维表面改性及耐碱性能
作者: 聪1 郭丽萍1 2 3  波4 邓忠华5 黄国钢6 罗德谟6 
单位:(1. 东南大学材料科学与工程学院 南京 211189 2. 东南大学江苏省土木工程材料重点实验室 南京 211189  3. 东南大学江苏省先进土木工程材料协同创新中心 南京 211189  4. 南京水利科学研究院 水文水资源与水利工程科学国家重点实验室 南京 210029  5. 永安市宝华林实业发展有限公司 福建 永安 366000 6. 永安市交通运输局 福建 永安 366000) 
关键词:聚乙烯醇纤维 纤维处理 接触角 耐碱性 微观力学 
分类号:TU52
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.11
摘要:

 采用疏水二氧化硅涂层与纳米石墨涂层两种方案对高强高模聚乙烯醇(PVA)纤维表面进行改性,并使用接触角测量仪、原子力显微镜及Fourier红外光谱仪对处理后的纤维表面进行表征,研究了高强高模PVA纤维的耐碱性及单丝拔出时的微观力学界面参数。结果表明:经过处理后PVA纤维表面粗糙度增加,由亲水状态成功转变为疏水状态,接触角均大于130°;PVA纤维耐碱性良好,碱浸泡后拉伸强度保持率大于95%;经过表面修饰后PVA纤维的化学粘结力大幅降低。纳米石墨涂层可以很好地调控纤维与水泥基体的界面,使纤维从水泥基体中被完整拔出。

  Polyvinyl alcohol (PVA) fiber surface was treated via hydrophobic silica coating and nanoscale graphite coating, respectively. The surface state of modified fiber was characterized by contact angle measurement, atomic force microscopy and infrared spectroscopy. The alkali resistance and the micromechanical interface parameters of PVA fiber were investigated. The results show that the surface roughness of modified PVA fibers increases, and the hydrophilic state changes to hydrophobic state. The contact angles are greater than 130°. The PVA fiber has excellent alkali resistance, and the retention rate of tensile strength after alkali soaking is greater than 95%. The chemical debond energy value decreases after the surface modification. The interface between fiber and cement matrix is well controlled by nanoscale graphite coating. The G-PVA fiber can be completely pulled out from cement matrix.

基金项目:
国家重点研发计划课题(2016YFC0401610);国家自然科学基金面上项目(51778133);国家重点项目(51438003);福建省交通运输科技项目(2017Y057)资助;国家自然科学基金项目(51739008)。
作者简介:
参考文献:

 [1] 庞超明, Leung C K Y, 孙伟. 高掺量粉煤灰高延性水泥基复合材料的制备和性能[J]. 硅酸盐学报, 2009, 37(12): 2071–2077.

PANG Chaoming, LEUNG C K Y, SUN Wei. J Chin Ceram Soc, 2009, 37(12): 2071–2077.
[2] 张丽辉, 郭丽萍, 孙伟, 等. 高延性水泥基复合材料的流变特性和纤维分散性[J]. 东南大学学报(自然科学版), 2014, 44(5): 1037–1040.
ZHANG Lihui, GUO LIPING, SUN Wei, et al. J Southeast Univ (in Chinese), 2014, 44(5): 1037–1040.
[3] SAKULICH A R, LI VC. Nanoscale characterization of engineered cementitious composites (ECC)[J]. Cem Concr Res, 2011, 41(2): 169–175.
[4] 郭丽萍, 陈波, 孙伟, 等. 膨胀剂对高延性水泥基复合材料力学及变形性能的影响[J]. 硅酸盐学报, 2016, 44(11): 1609–1613.
GUO Liping, CHEN Bo, SUN Wei, et al. J Chin Ceram Soc, 2016, 44(11): 1609–1613.
[5] MA H, CAI J, LIN Z, et al. CaCO3 whisker modified Engineered Cementitious Composite with local ingredients[J]. Constr Build Mater, 2017, 151: 1–8.
[6] LI V C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite[J]. Aci Mater J, 2001, 98: 483–492.
[7] WANG S, LI V C. Engineered cementitious composites with high-volume fly ash[J]. Aci Mater J, 2007, 104(3): 233–241.
[8] LIN Z, LI V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces[J]. J Mech Phys Solids, 1997, 45(5): 763–787.
[9] JEWELL B, MAHBOUB K, ROBL T, et al. Interfacial bond between reinforcing fibers and calcium sulfoaluminate cements: Fiber pullout characteristics[J]. Aci Mater J, 2015, 112(1): 39–48.
[10] PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low-and high-modulus polymeric fibers[J]. Constr Build Mater, 2016, 112: 739–746.
[11] REDON C, LI V C, WU C, et al. Measuring and modifying Interface properties of PVA fibers in ECC matrix[J]. J Mater Civil Eng, 2001, 13(6): 399–406.
[12] ZHANG Z, ZHANG Q. Matrix tailoring of Engineered Cementitious Composites (ECC) with non-oil-coated, low tensile strength PVA fiber[J]. Constr Build Mater 2018, 161: 420–431.
[13] WANG S, LI V C. Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances. In: Proceedings of Int’l RILEM workshop on HPFRCC in structural applications. Published by RILEM SARL, 2006: 65–73.
[14] YANG E H. Designing added functions in engineered cementitious composites[J]. Adv Mater Res, 2008, 409: 329–334.
[15] CAO M, WANG C, XIA R, et al. Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials[J]. Constr Build Mater, 2018, 168: 482–489.
[16] WU H C, LI V C. Fiber/cement interface tailoring with plasma treatment[J]. Cem Concr Compos, 1999, 21(3): 205–212.
[17] TOSUN K, FELEOGLU B, BARADAN B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading[J]. Cem Concr Compos, 2012, 34(4): 508–520.
[18] TREJBAL J, KOPECKY L, TESAREK P, et al. Impact of surface plasma treatment on the performance of PET fiber reinforcement in cementitious composites[J]. Cem Concr Res, 2016, 89: 276–287.
[19] FERREIRA S R, SILVA F D A, LIMA P R L, et al. Effect of fiber treatments on the sisal fiber properties and fiber–matrix bond in cement based systems[J]. Constr Build Mater, 2015, 101: 730–740.
[20] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4): 452–458.
SHI Jinjie, SUN Wei, GENG Guoqing. J Build Mater (in Chinese), 2011, 14(4): 452–458.
[21] 马佳晨, 张炉青, 张学旭, 等. 改性水泥基材料用聚乙烯醇纤维耐碱性能研究[J]. 中国粉体技术, 2015, 21(2): 61–63.
MA Jiachen, ZHANG Luqing, ZHANG Xuexu. China Powder Sci Technol (in Chinese), 2015, 21(2): 61–63.
[22] WANG L X, LI S S. Wettability measurement and hydrophobicity mechanism analysis of leaf surface of hylotelephium erythrostictum[J]. J Hebei Univ Sci Technol, 2018, 39(1): 1–8.
[23] CHAMAKOS N T, KAVOUSANAKIS M E, BOUDOUVIS A G, et al. Droplet spreading on rough surfaces: Tackling the contact line boundary condition[J]. Phys Fluids, 2016, 28(2): 1–35.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com