首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
等离子喷涂沉积Al2O3-SiO2涂层的光学性能
作者:司先锋1 2  壮1 2 高丽红1 2 王富耻1 2 朱时珍1 2  玲1 2 柳彦博1 2 
单位:(1. 北京理工大学材料学院 北京 100081 2. 冲击材料国家重点实验室 北京 100081) 
关键词:等离子喷涂 氧化铝-氧化硅 光学性能 层状结构 孔隙率 
分类号:V254.2
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.12
摘要:

 采用等离子喷涂技术制备Al2O3-SiO2涂层,研究不同喷涂参数下颗粒熔融状态、微观结构、物相组成对涂层光学反射率的影响规律。结果表明:随着等离子喷涂功率的增加,颗粒熔融状态逐渐变得更加充分,Al2O3-SiO2涂层中SiO2部分由晶态向非晶态转变,部分Al2O3和SiO2固相反应生成了Al6Si2O13,新相的产生将使得整个涂层材料体系的相组成更加复杂丰富,相界面增多,有利于涂层光学性能的提高。此外,在涂层的内部,层状结构的形成和孔隙率的增加均有益于涂层光学性能的提高。因此,粉末的熔融状态、涂层的微观结构和物相组成的优化对提高Al2O3-SiO2涂层的光学性能提供了可能。

 Al2O3-SiO2 coatings were prepared by plasma spraying at different process parameters. The influences of particle melting state, microstructure and phase composition on the optical reflectivity of the coatings prepared at different spraying parameters were investigated. The results show that melting state of the particles becomes more complete when the plasma spraying power increases. The SiO2 of Al2O3-SiO2 coating changes from amorphous to crystalline, and the solid phase reaction of some Al2O3 and SiO2 generates Al6Si2O13. The formation of the new phase can make the phase composition of the whole coating system more complex and rich in phase interface. The increase of phase interface is beneficial to the improvement of optical properties of coatings. In addition, the formation of the layered structure and the increase of the porosity in the interior of the coating both are beneficial to the improvement of the optical properties of the coating. It is thus possible to improve the optical properties of Al2O3-SiO2 coating via the optimization of the melting state, microstructure and phase composition of the powder.

基金项目:
国家自然科学基金(51772027)。
作者简介:
参考文献:

 [1] 徐永祥, 李运德, 师华, 等. 太阳热反射隔热涂料研究进展[J]. 涂料工业, 2010(1): 70–74.

XU Yongxiang, LI Yunde, SHI Hua, et al. Paint Coat Ind (in Chinese), 2010(1): 70–74
[2] 徐峰. 反射型建筑保温隔热涂料的应用与发展[J]. 现代涂料与涂装, 2007, 10(1): 20–24.
XU Feng. Modern Paint Finish (in Chinese), 2007, 10(1): 20–24.
[3] LEVINSON R, BERDAHL P, AKBARI H, et al. Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials[J]. Solar Energy Mater Solar Cell, 2007, 91(4): 304–314.
[4] 汤召君, 王珍, 孟庆华, 等. 新型红外反射材料进展及其在玻璃节能贴膜中的应用[J]. 信息记录材料, 2011, 12(1): 38–47.
TANG Zhaojun, WANG Zhen, MENG Qinghua, et al. Inform Record Mater (in Chinese), 2011, 12(1): 38–47.
[5] 张锦龙. 金属介质薄膜结构的研究与制备[D]. 杭州: 浙江大学, 2009.
ZHANG Jinlong. Study and preparation of metal dielectric thin film structure (in Chinese, dissertation). Hangzhou: Zhejiang University, 2009.
[6] 晏良宏, 蒋晓东, 江波. 溶胶-凝胶法制备氧化铝光学薄膜[J]. 化学研究与应用, 2008, 20(7): 887–889.
YAN Lianghong, JIANG Xiaodong, JIANG Bo. Chem Rese Appl (in Chinese), 2008, 20(7): 887–889.
[7] 张勤俭, 张建华, 李敏, 等. 用溶胶-凝胶法制备Al2O3涂层工程陶瓷的表面改性研究[J]. 硅酸盐学报, 2001, 29(5): 416–421.
ZHANG Qinjian, ZHANG Jianhua, LI Min, et al. J Chin Ceram Soc, 2001, 29(5): 416–421.
[8] 李东荣, 王富耻, 马壮, 等. 等离子喷涂Al2O3涂层CO2连续激光反射性能的研究[J]. 有色金属(冶炼部分), 2008(5): 38–41.
LI Dongrong, WANG Fuchi, MA Zhuang, et al. Nonferrous Met (Extractive Metall) (in Chinese), 2008(5): 38–41.
[9] 张欣向, 庄梦云, 林明月, 等. 折射率可调SiO2薄膜及耐环境性宽频增透膜的制备[J]. 功能材料, 2014, 45(22): 22143–22146.
ZHANG Xinxiang, ZHUANG Mengyun, LIN Mingyue, et al. J Funct Mater (in Chinese), 2014, 45(22): 22143–22146.
[10] 李智鸿. 太阳热反射陶瓷的制备及性能研究[D]. 广州: 华南理工大学, 2017.
LI Zhihong. Preparation and properties of solar heat reflective ceramics (in Chinese, dissertation). Guangzhou: South China University of Technology, 2017.
[11] FAUCHAIS P. Understanding plasma spraying[J]. J Phys Appl Phys, 2004, 37 (04): R86–R108.
[12] 陈鹏荣. 等离子喷涂制备钴基涂层及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
CHEN Pengrong. Cobalt based coating prepared by plasma spraying and its microstructure and properties (in Chinese, dissertation). Harbin: Harbin Institute of Technology, 2010.
[13] JIN L, NI L, YU Q, et al. Thermal cyclic life and failure mechanism of nanostructured 13wt%Al2O3 doped YSZ coating prepared by atmospheric plasma spraying[J]. Ceram Int, 2012, 38(4): 2983–2989.
[14] 安家财, 杜三明, 肖宏滨, 等. 等离子喷涂ZrO2/Al2O3陶瓷涂层的摩擦磨损性能[J]. 中国表面工程, 2011, 24(1): 20–24.
AN Jiacai, DU Sanming, XIAO Hongbin, et al. China Surface Eng (in Chinese), 2011, 24(1): 20–24.
[15] 于方丽, 白宇, 吴秀英, 等. 等离子喷涂镍基可磨耗封严涂层抗腐蚀及耐磨性能分析[J]. 无机材料学报, 2016, 31(7): 687–693.
YU Fangli, BAI Yu, WU Xiuying, et al. J Inorg Mater (in Chinese), 2016, 31(7): 687–693.
[16] SALIMIJAZI H, HOSSEINI M, MOSTAGHIMI J, et al. Plasma sprayed coating using mullite and mixed alumina/silica powders[J]. J Therm Spray Technol, 2012, 21(5): 825–830.
[17] STUKE A, KASSNER H, MARQUES J L, et al. Suspension and air plasma-sprayed ceramic thermal barrier coatings with high infrared reflectance[J]. Int J Appl Ceram Technol, 2012, 9(3): 561–574.
[18] ZHU J, GAO L, MA Z, et al. Optical property of La1−xSrxTiO3+δ coatings deposited by plasma spraying technique[J]. Appl Surface Sci, 2015, 356: 935–940.
[19] MCPHERSON R. The relationship between the mechanism of formation, microstructure and properties of plasma-sprayed coatings[J]. Thin Solid Films, 1981, 83(3): 297–310.
[20] MCPHERSON R. On the formation of thermally sprayed alumina coatings[J]. J Mater Sci, 1980, 15(12): 3141–3149.
[21] GAO L, MA Z, WANG S, et al. Structural and optical properties of La1−xSrxTiO3+δ[J]. Materials, 2014, 7(7): 4982–4993.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com