首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
气溶胶辅助CVD法制备F掺杂SnO2薄膜及其性能
作者: 轩1  波1 2 邸庆银2 赵洪力1 2 杨静凯2 
单位:(1. 燕山大学材料科学与工程学院 河北 秦皇岛 066004 2. 亚稳材料制备技术与科学国家重点实验室 河北 秦皇岛 066004) 
关键词:气溶胶辅助化学气相沉积法 氟掺杂二氧化锡薄膜 氟掺杂量 电学性能 光致发光 
分类号:TB43
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.13
摘要:

 采用气溶胶辅助化学气相沉积法(AACVD)在玻璃衬底上沉积F掺杂SnO2(FTO)薄膜,研究了前驱液中不同F/Sn摩尔比制备的FTO薄膜的结构、表面形貌、光学、电学及光致发光性能。结果表明:所制备FTO薄膜均为(200)面择优取向的多晶四方金红石相结构;前驱液中F/Sn摩尔比的增加,会导致(110)面的衍射峰强度增加,薄膜表面堆积颗粒形状发生变化,薄膜样品光学透过率提升;当F/Sn摩尔比=40%时,FTO薄膜具有最大的载流子浓度1.031×1021 cm–3以及最小的电阻率3.42×10–4 Ω•cm,这可归结为适量F的存在产生不同的缺陷影响。(200)面择优取向FTO薄膜光致发光谱可用于表征不同缺陷形式的跃迁。

 F-doped SnO2 (FTO) films were deposited on glass substrates via aerosol-assisted chemical vapor deposition (AACVD). The structure, surface morphology, optical, electrical and photoluminescence properties of FTO films with different F/Sn ratios in the precursor solution were investigated. Results show that, the prepared FTO films are a polycrystalline tetragonal rutile phase structure with (200) plane orientation. The increase of F/Sn ratio in the precursor solution results in an increase in the diffraction peak intensity of the (110) plane, thus changing the particle shape on the surface of the films and improving the optical transmittance of the films. The FTO film has a maximum carrier concentration of 1.031×1021 cm–3 and a minimum resistivity of 3.42×10–4 Ω•cm when F/Sn ratio is 40% (mole ratio), since different defects are affected in the presence of an appropriate amount of F. The transition forms of different defects can be characterized by photoluminescence spectroscopy of the (200) plane orientation FTO film.

基金项目:
国家青年自然科学基金(51602278);河北省自然科学基金青年科学基金(E2016203149);河北省教育厅高等学校科技计划青年拔尖人才(BJ2018004)。
作者简介:
参考文献:

 [1] YANG J K, ZHAO H L, CHEN Q, et al. Studies on the residual stress of fluorine-doped SnO2 film deposited by chemical vapor deposition[J]. Thin Solid Films, 2012, 520(17): 5691–5694.

[2] WANG J T, SHI X L, LIU W W, et al. Influence of preferred orientation on the electrical conductivity of fluorine-doped tin oxide films[J]. Sci Rep, 2014, 4: 3679.
[3] YANG M, KIM H C, HONG S. Growth of ZnO nanorods on fluorine-doped tin oxide substrate without catalyst by radio-frequency magnetron sputtering[J]. Thin Solid Films, 2014, 573: 79–83.
[4] VELÁZQUEZ-NEVÁREZ G A, VARGAS-GARCÍA J R, LARTUNDO-ROJAS L, et al. Preparation, characterization and electronic properties of fluorine-doped tin oxide films[J]. J Wuhan Univ Technol, 2016, 31(1): 48–51.
[5] KIM H, AUYEUNG R C Y, PIQUÉ A. F-doped SnO2 thin films grown on flexible substrates at low temperatures by pulsed laser deposition[J]. Thin Solid Films, 2011, 520(1): 497–500.
[6] TAHIR A A, WIJAYANTHA K G U, MAZHAR M, et al. ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition[J]. Thin Solid Films, 2010, 518(14): 3664–3668.
[7] PICCIRILLO C, BINIONS R, PARKIN I P. Synthesis and characterization of W-doped VO2 by aerosol assisted chemical vapor deposition[J]. Thin Solid Films, 2008, 516(8): 1992–1997.
[8] SHEWALE P S, UNG SIM K, KIM Y, et al. Structural and photoluminescence characterization of SnO2:F thin films deposited by advanced spray pyrolysis technique at low substrate temperature[J]. J Lumin, 2013, 139: 113–118.
[9] YANG J K, LIU W C, DONG L Z, et al. Studies on the structural and electrical properties of F-doped SnO2 film prepared by APCVD[J]. Appl Surf Sci, 2011, 257(24): 10499–10502.
[10] WANG X L, WANG X, DI Q Y, et al. Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles[J]. Materials, 2017, 10(12): 1398.
[11] BILGIN V, AKYUZ I, KETENCI E, et al. Electrical, structural and surface properties of fluorine doped tin oxide films[J]. Appl Sur Sci, 2010, 256(22): 6586–6591.
[12] ELANGOVAN E, RAMAMURTHI K. Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor[J]. Thin Solid Films, 2005, 476(2): 231–236.
[13] THIRUMOORTHI M, PRAKASH J T J. Effect of F doping on physical properties of (211) oriented SnO2 thin films prepared by jet nebulizer spray pyrolysis technique[J]. Superlattices Microst, 2016, 89: 378–389.
[14] 宁洁, 周艳文, 樊子铭. 粉末靶磁控溅射制备F掺杂SnO2薄膜的结构及光学性能[J]. 材料保护, 2014(S1): 35–38.
NING Jie, ZHOU Yanwen, FAN Ziming. Maters Protect (in Chinese), 2014(S1): 35–38.
[15] AMEUR S B, BARHOUMI A, BEL HADJLTAIEF H, et al. Physical investigations on undoped and Fluorine doped SnO2 nano films on flexible substrate along with wettability and photocatalytic activity tests[J]. Mater Sci Semicond Proc, 2017, 61: 17–26.
[16] KIM C, RIU D. Texture control of fluorine-doped tin oxide thin film[J]. Thin Solid Films, 2011, 519(10): 3081–3085.
[17] NOOR N, PARKIN I P. Enhanced transparent-conducting fluorine-doped tin oxide films formed by aerosol-assisted chemical vapor deposition[J]. J Mater Chem C, 2013, 1(5): 984–996.
[18] SUN S H, MENG G W, ZHANG G X, et al. Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders[J]. Chem Phys Lett, 2003, 376(1–2): 103–107.
[19] HU J Q, MA X L, SHANG N G, et al. Large-scale rapid oxidation synthesis of SnO2 nanoribbons[J]. J Phys Chem B, 2002, 106(15): 3823–3826.
[20] VAN TRAN T T, SI BUI T, TURRELL S, et al. Controlled SnO2 nanocrystal growth in SiO2-SnO2 glass-ceramic monoliths[J]. J Raman Spectrosc, 2012, 43(7): 869–875.
[21] ZHOU G X, XIONG S J, WU X L, et al. N-doped SnO2 nanocrystals with green emission dependent upon mutual effects of nitrogen dopant and oxygen vacancy[J]. Acta Mater, 2013, 61(19): 7342–7347.
[22] SLONOPAS A, ALIJABBARI N, SALTONSTALL C, et al. Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics[J]. Electrochim Acta, 2015, 151: 140–149.
[23] GLOBUS T, GANGULY G, ROCA I CABARROCAS P. Optical characterization of hydrogenated silicon thin films using interference technique[J]. J Appl Phys, 2000, 88(4): 1907–1915.
[24] BHATTACHARJEE A, AHMARUZZAMAN M, SIL A K, et al. Amino acid mediated synthesis of luminescent SnO2 nanoparticles[J]. J Ind Eng Chem, 2015, 22: 138–146.
[25] DIXON S C, SCANLON D O, CARMALT C J, et al. n-Type doped transparent conducting binary oxides: an overview[J]. J Mater Chem C, 2016, 4(29): 6946–6961.
[26] SWALLOW J E N, WILLIAMSON B A D, WHITTLES T J, et al. Self-compensation in transparent conducting F-doped SnO2[J]. Adv Funct Mater, 2018, 28(4): 1701900.
[27] LOOK D C, LEEDY K D, VINES L, et al. Self-compensation in semiconductors: The Zn vacancy in Ga-doped ZnO[J]. Phys Rev B, 2011, 84: 115202.
[28] KALIMUTHU V, RATH S. UV photoluminescence from nanocrystalline tin oxide synthesized by a one-step hydrothermal method[J]. Mater Lett, 2015, 157: 11–14. 
[29] CAUSÀ M, NINNO D, CANTELE G, et al. Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites[J]. Phys Rev B, 2008, 77(24): 245410.
[30] MAZEINA L, PICARD Y N, CALDWELL J D, et al. Growth and photoluminescence properties of vertically aligned SnO2 nanowires[J]. J Cryst Growth, 2009, 311(11): 3158–3162.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com