首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硅锂比对二硅酸锂玻璃陶瓷的结构与性能的影响
作者:林燕喃1  城2 陈含德2 逄舒淇2  腾2 
单位:(1. 福建卫生职业技术学院药学系 福州 2. 福州大学材料科学与工程学院 福州 350108) 
关键词:二硅酸锂 玻璃陶瓷 硅锂摩尔比 弯曲强度 断裂韧性 
分类号:R783.1
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.15
摘要:

 研究了硅锂摩尔比对二硅酸锂体系玻璃的结构与性能的影响,并在具有最佳性能的组分基础上,探究成核处理对玻璃的结构与力学性能的影响规律。结果表明:硅锂摩尔比n(SiO2):n(Li2O)从2.0增加到2.4,玻璃的结构和热性能及力学性能发生显著变化。其中,n(SiO2):n(Li2O)为2.2的组分最易析晶,具有最佳的力学性能[玻璃陶瓷三点弯曲强度(404±30) MPa]。同时研究了成核温度、时间对玻璃结构与力学性能的影响规律。n(SiO2):n(Li2O)为2.2的组分经优化晶化工艺处理后,一次热处理的主晶相为偏硅酸锂,二次热处理的主晶相为二硅酸锂,断裂韧性为3.58 MPa•m–1/2。

 The effect of SiO2/Li2O ratio (in mole) on the structure and property of lithium disilicate glass-ceramics was investigated. The structure and mechanical properties of the specimen under nucleation conditions were analyzed. The results show that the structure and property of glass change when SiO2/Li2O ratio increases from 2.0 to 2.4. The specimen with a SiO2/Li2O ratio of 2.2 has the optimum crystallization and mechanical properties of lithium disilicate glass-ceramics (i.e., a bending strength of (404±30) MPa). Also, the effects of nucleation temperature and time on the structure and mechanical property of the glass with a SiO2/Li2O ratio of 2.2 were investigated. In the preparation process, the main phase in this glass after first heat treatment is lithium metasilicate. The main phase in this glass after second heat treatment is lithium disilicate, which possesses a fracture toughness of 3.58 MPa•m–1/2.

基金项目:
福建省教育厅中青年教师教育科研项目(JAT171041);国家自然科学基金资助项目(51672045)。
作者简介:
参考文献:

 [1] 巢永烈, 梁星. 我国牙体缺损保存修复的现状、存在问题与对策[J]. 中华口腔医学志, 2006 (6): 321–322. 

CAO Yonglie, LIAN Xing. Chin J Stomatol (in Chinese), 2006(6): 321–322. 
[2] HICKEL R. Trends in materials science from the point of view of a practicing dentist[J]. J Eur Ceram Soc, 2009, 29(7): 1283–1289. 
[3] HOLAND W, RHEINBERGER V, APEL E, et al. Future perspectives of biomaterials for dental restoration[J]. J Eur Ceram Soc, 2009, 29(7): 1291–1297. 
[4] CONRAD H J, SEONG W, PESUN G J. Current ceramic materials and systems with clinical recommendations: A systematic review[J]. J Prosth Dent, 2007, 98(5): 389–404. 
[5] 仇越秀, 苗鸿雁, 夏傲, 等. 牙科修复中陶瓷的应用[J]. 陶瓷科学与艺术, 2004(6): 38–43. 
CHOU Yuexiu, MIAO Hongyan, XIA Ao, et al. Ceram Sci Art (in Chinese), 2004(6): 38–43.
[6] 张光磊, 张久兴, 钟涛兴. 牙科陶瓷的发展与全瓷修复技术的应用[J]. 北京生物医学工程, 2006(1): 109–112. 
ZHANG Guanglei, ZHANG Jiuxing, ZHONG Taoxing. Beijing Biomed Eng(in Chinese), 2006(1): 109–112. 
[7] 伊哲, 李柯檬, 艾红军. 三种二硅酸锂玻璃陶瓷冠抗折强度研究[J]. 中国实用口腔科杂志, 2016(6): 354–357. 
YI Zhe, LI Kemeng, AI Hongjun. Chin J Practical Stomat(in Chinese), 2016(6): 354–357. 
[8] LAWSON N C, BANSAL R, BURGESS J O. Wear, strength, modulus and hardness of CAD/CAM restorative materials[J]. Dental Mater, 2016, 32(11): e275–e283. 
[9] GADDAM A, FERNANDES, HR, TULYAGANOV DU, et al. The roles of P2O5 and SiO2/Li2O ratio on the network structure and crystallization kinetics of non-stoichiometric lithium disilicate based glasses[J]. J Non-Cryst Solids, 2018, (481): 512–521. 
[10] TYSOWSKY G W. The science behind lithium disilicate: a metal-free alternative[J]. Dent Today, 2009, (28): 112–113. 
[11] CAMPOS A A, RODRIGUES A C M. Effect of crystallization on the electrical conductivity of lithium disilicate glasses[J]. Glass Sci Technol, 2002, 75: 115–120. 
[12] HALLMANN L, ULMER P, KERN M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics[J]. J Mech Behav Biomed Mater, 2018, 82: 355–370
[13] GADDAM A, GOYAL M, JAIN S, et al. Lithium disilicate based glass-ceramics for dental applications[J]. Trans Ind Ceram Soc, 2013, 72(1): 56–60. 
[14] GADDAM A, FERNANDES H R, FERREIRA J M F. Glass structure and crystallization of Al and B containing glasses belonging to the LiO2-SiO2 system[J]. RSC Adv, 2015, 5(51): 41066–41078. 
[15] XIA L, WEN G W, QIN C L, et al. Mechanical and thermal expansion properties of beta-eucryptite prepared by sol-gel methods and hot pressing[J]. Mater Design, 2011, 32(5): 2526–2531. 
[16] CABRAL A A, FREDERICCI C, ZANOTTO E D. A test of the Hruby parameter to estimate glass-forming ability[J]. J Non-Cryst Solids, 1997, 219: 182–186. 
[17] AVRAMOV I, ZANOTTO E D, PRADO M O. Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration[J]. J Non-Cryst Solids, 2003, 320(1/3): 9–20. 
[18] SESTAK J, KOZMIDIS-PETROVIC A, ZIVKOVIC Z. Crystallization kinetics accountability and the correspondingly developed glass-forming criteria-a personal recollection at the forty years anniversaries[J]. J Min Metall B, 2011, 47(2): 229–239. 
[19] LI D, LI X C, ZHANG Z Z, et al. Understanding the mechanism for the mechanical property degradation of a lithium disilicate glass-ceramic by annealing[J]. J Mech Behav Biomed Mater, 2018, 78: 28–35. 
[20] ALAO A R, LING Y. Nano-mechanical behaviour of lithium metasilicate glass–ceramic[J]. J Mech Behav Biomed Mater, 2015, 49: 162–174. 
[21] GAO Jing, CHEN J H, WANG Fu, et al. Effect of dental heat-pressing on the microstructure and properties of a novel lithium disilicate glass-ceramic[J]. J Funct Mater, 2010, 41(5): 767–770. 
[22] BOCKER C, FUNKE C, RUESSEL C. Strengthening of a zinc silicate glass by surface crystallization[J]. Mater Lett, 2017, 207: 41–43. 
[23] NARAYAN R Y, SINGH P S, HOFMANN D C, et al. On the microstructure-tensile property correlations in bulk metallic glass matrix composites with crystalline dendrites[J]. Acta Mater, 2012, 60(13–14): 5089–5100. 
[24] RINCON J M. Principles of nucleation and controlled crystallization of glasses[J]. Polym Plastics Technol Eng, 1992, 31(3/4): 309–357. 
[25] THIEME K, RUESSEL C. Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass[J]. J Mater Sci, 2015, 50(3): 1488–1499.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com