首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硫系玻璃动力学强弱性评测方法
作者: 振1 顾少轩1 陶海征1 唐博博2  蓉2 赵仲勋2 梁立新2 徐华峰2 
单位:(1. 硅酸盐建筑材料国家重点实验室 武汉理工大学 武汉 430070 2. 湖北新华光信息材料有限公司 湖北 襄阳 441057) 
关键词:硫系玻璃 动力学强弱性 黏温关系 量热法 
分类号:TB484
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.16
摘要:

 玻璃动力学强弱性指数m值的主要评测方法有两种:通过玻璃转变温度附近黏温关系测试直接获得mvis值;基于量热分析,根据不同升温速率获得假想温度,并假定玻璃转变温度范围内假想温度Tf符合Arrhenius关系,通过理论推导间接获得mDSC值。由于玻璃转变温度范围内假想温度Tf和黏度的关系实际上并非严格遵循Arrhenius关系,因此mDSC和mvis之间存在偏差。以系列商用硫系玻璃为例,通过两种评测方法比较,建立了通过mDSC推算mvis的经验公式,实现了准确、快速的评测硫系玻璃动力学强弱性。

 There are two evaluation methods to obtain dynamic fragility. They are a) directly determination of mvis index using viscosity values near the glass transition temperature, and b) determination of fictive temperature Tf at different heating rates and the Tf around the glass transition temperature rangefollowing the Arrhenius behavior, thus obtaining the mDSC index by theoretical deductionbased on calorimetric analysis method. However, in the glass transition temperature range, the Tf has not strict Arrhenius relationship with temperature, thus the calorimetric fragilities index mDSC deviates from the mvis. Taking commercialchalcogenide glasses as an example, we proposed an empirical formula for calculating mvis through mDSC and achieved the accurate and rapid evaluation of the dynamic fragility of chalcogenide glassesvia comparing the two evaluation methods.

基金项目:
湖北省技术创新专项重大项目(2016AAA029)。
作者简介:
参考文献:

 [1] BUECHEL Patric, RICHTER Moses, TEDDE Sa F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors.[J]. Nat Photon, 2015, 9(12): 843–848.

[2] BURESOVA H, PRPCHAZKOVA L, TURTO R M, et al., Preparation and luminescence properties of ZnO: Ga-polystyrene composite scintillator.[J]. Opt Express, 2016, 24(14): 15289–15298.
[3] BURGER A, ROWE E, GROZ M, et al. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy.[J]. Appl Phys Lett, 2015, 107(14): 143505.
[4] CHEN Weiping, CAO Jiangkun, HU Fangfang, et al., Highly efficient Na5Gd9F32: Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging.[J]. Opt Mater Express, 2018, 8(1): 41–49.
[5] CAO Jiangkun, CHEN Liping, CHEN Weiping, et al. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals.[J]. Opt Mater Express, 2016, 6(7): 2201–2206.
[6] CAO Jiangkun, WANG Xiuyao, LI Xiaoman, et al. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals.[J]. J Lumin, 2016, 170: 207–211.
[7] LEE G, STRUEBING C, WAGNER B, et al. Synthesis and characterization of a BaGdF5: Tb glass ceramic as a nanocomposite scintillator for x-ray imaging.[J]. Nanotechnology, 2016, 27(20): 205203.
[8] STRUEBING C, LEE Gyuhyon, WAGNER B, et al. Synthesis and luminescence properties of Tb doped LaBGeO5 and GdBGeO5 glass scintillators.[J]. J Alloys Compd, 2016, 686: 9–14.
[9] SUN Xinyuan, YU Xiaoguang, WANG Wenfeng, et al. Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses.[J]. J Non-Cryst Solids, 2013, 379: 127–130.
[10] 代雨航, 李剑, 朱忠丽, 铒镱双掺氧化镥钆透明陶瓷的制备及发光特性.[J]. 硅酸盐学报, 2017, 45(7): 941–947.
DAI Yuhang, LI Jian, ZHU Zhongli. J Chin Ceram Soc (in Chinese), 2017, 45(7): 941–947.
[11] 何云龙, 赵高凌, 汪建勋等, Er3+和Yb3+共掺锗酸盐玻璃的上转换发光性能.[J]. 硅酸盐学报, 2013, 41 (6): 854–857.
HE Yunlong, ZHAO Gaoling, WANG Jianxun, et al. J Chin Ceram Soc, 2013, 41(6): 854–857.
[12] CHEN Qiuqun, ZHANG Fangteng, CHEN Zhi, et al., Near-infrared luminescence property of Te-doped zinc phosphate glasses.[J]. J Non-Cryst Solids, 2017, 458: 76–79.
[13] GUO Hai, ZHANG Hao, LI Jingjing, et al. Blue-white-green tunable luminescence from Ba2Gd2Si4O13: Ce3+, Tb3+ phosphors excited by ultraviolet light.[J]. Opt Expr, 2010, 18(26): 27257–27262.
[14] CAO Jiangkun, CHEN Weiping, CHEN Liping, et al. Synthesis and characterization of BaLuF5: Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging.[J]. Ceram Int, 2016, 42(15): 17834–17838.
[15] CHRN Wei, TU Haiqing, SAHI Sunil, et al. Luminescence of La0.2Y1.8O3 nanostructured scintillators.[J]. Opt Lett, 2014, 39(19): 5705–5708.
[16] FU Jie, KOBAYASHI Masaaki, SUGIMOTO Shojiro, et al. Scintillation from Eu2+ in nanocrystallized glass.[J]. J Am Ceram Soc, 2009, 92(9): 2119–2121.
[17] LEE Gyuhyon, SAVAGE Nicholas, WAGNER Brent, et al. Synthesis and luminescence properties GdF3: Tb glass-ceramic scintillator.[J]. J Lumin, 2014, 147, 363–366.
[18] STRUEBING C, CHONG Jooyun, LEE Gyuhyon, et al., A neutron scintillator based on transparent nanocrystalline CaF2: Eu glass ceramic.[J]. Appl Phys Lett, 2016, 108(15): 153106.
[19] CHEN Zhi, WANG Weirong, KANG Shiliang, et al. Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation.[J]. Adv Opt Mater, 2018, 6(4): 1700787.
[20] FANG Zaijin, ZHENG Shupei, PENG Wencai, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals.[J]. J Am Ceram Soc, 2015, 98(9): 2772–2775.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com