首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
B掺杂对(Al0.2Zr0.8)4/3.8Nb(PO4)3固体电解质性能的影响
作者:  马嘉韩 李跃华   周会珠   
单位:(华北理工大学化学工程学院 河北 唐山 063210) 
关键词:铝离子导体 磷酸铌锆铝  硼掺杂 电导率 
分类号:O614.3+1
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用高温固相反应法对(Al0.2Zr0.8)4/3.8Nb(PO4)3的P位进行B掺杂,获得了固体电解质(Al0.2Zr0.8)(4+2x)/3.8NbP3–xBxO12 (x=0~0.2)。利用X射线衍射、场发射扫描电子显微镜、电化学交流阻抗法、直流极化法等对样品的相组成、微观形貌和电性能进行表征。结果表明:不同比例B掺杂的固体电解质(Al0.2Zr0.8)(4+2x)/3.8NbP3–xBxO12(x=0~0.2)均具有NASICON型三维结构,B掺杂并未影响固体电解质的物相结构;与(Al0.2Zr0.8)4/3.8Nb(PO4)3相比,B掺杂后的样品致密度增大,电导率提高。 (Al0.2Zr0.8)4.2/3.8NbP2.9B0.1O12(x=0.1)具有最大的致密度和最高的电导率。在600 ℃时,样品电导率达到1.27×10–3 S•cm–1,是未掺杂样品的2倍;直流极化法测试证实,样品为纯Al3+传导,电子传导可忽略不计。

 P site in (Al0.2Zr0.8)4/3.8Nb(PO4)3 was doped by boron ions via high-temperature solid- state reaction to form (Al0.2Zr0.8)(4+2x)/3.8NbP3–xBxO12(x=0–0.2) solid electrolyte. The phase composition, microstructure and electrical properties of the samples were investigated by X-ray diffraction, field emission scanning electron microscopy, electrochemical impedance spectroscopy and direct current polarization method, respectively. The results show that the solid electrolyte (Al0.2Zr0.8)(4+2x)/3.8NbP3–xBxO12(x=0–0.2) samples doped with different proportions of B have a three-dimensional NASICON structure, implying that B ion doping does not affect the phase structure of the solid electrolyte. Compared with (Al0.2Zr0.8)4/3.8Nb(PO4)3, all the B ion-doped samples are of higher bulk density and conductivity. Among all the samples, (Al0.2Zr0.8)4.2/3.8NbP2.9B0.1O12(x=0.1) has the maximum bulk density and the total conductivity of 1.27×10–3 S•cm–1 at 600 ℃. Based on the result of the DC polarization test, Al3+ is the main conduction ion in the electrolyte and the electronic conduction is negligible.

 
基金项目:
国家自然科学基金(51472073)和河北省自然科学基金(E2017 209260)项目资助。
作者简介:
参考文献:

 [1] CUSHING B L,GOODENOUGH J B. Li2NaV2(PO4)3: a 3.7 V lithium-insertion cathode with the rhombohedral nasicon structure[J]. J Solid State Chem, 2001, 162(2): 176–181.

[2] 刘佳, 周会珠, 朱靖, 等. 高价阳离子固体电解质的研究进展[J]. 功能材料, 2012, 43(B08): 22–28.
LIU Jia, ZHOU Huizhu, ZHU Jing, et al. J Funct Mater (in Chinese), 2012, 43(B08): 22–28.
[3] ANANTHARAMULU N, RAO K K, RAMBABU G, et al. A wide-ranging review on nasicon type materials[J]. J Mater Sci, 2011, 46(9):2821–2837. 
[4] OHTOMO T, MIZUNO F, HAYASHI A, et al. Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes[J]. J Power Sources, 2005, 146(1–2): 715–718.
[5] THANGADURAI V, SHUKLA A K, GOPALAKRISHNAN J. New lithium-ion conductors based on the nasicon structure[J]. J Mater Chem, 1999, 9(3): 739–741. 
[6] XIE H, GOODENOUGH J B, LI Y. Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature li-ion solid electrolyte[J]. J Power Sources, 2011, 196(18): 7760–7762. 
[7] GOODENOUGH J B, HONG Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater Res Bull, 1976, 11(2): 203–220.
[8] IMANAKA N, OKAZAKI Y, ADACHI G. Divalent magnesium ionic conduction in Mg1–2x(Zr1–xNbx)4P6O24(x=0–0.4) solid solutions[J]. Electrochem Solid State Lett, 2000, 3(7): 327–329.
[9] TAMURA S, OKADA Y, IMANAKA N. Divalent Sr2+ cation conducting solid electrolyte with nasicon-type structure[J]. Electrochem, 2014, 82(10): 830–832.
[10] IMANAKA N, OKAZAKI Y, ADACHI G Y. Divalent magnesium ionic conduction in the magnesium phosphate based composites[J]. Chem Lett, 1999(9): 939–940.
[11] HASEGAWA Y, TAMURA S, IMANAKA N. Effect of low-melting oxide additives on the sinterability and ion conductivity of Al3+ ion conducting solid electrolytes with the nasicon type structure[J]. J New Mater Electrochem Syst, 2005, 8(3): 203–207. 
[12] IMANAKA N, HASEGAWA Y, YAMAGUCHI M, et al. Extraordinary high trivalent Al3+ ion conduction in solids[J]. Chem Mater, 2002, 14(11): 4481–4483.
[13] HASEGAWA Y, IMANAKA N, ADACHI G Y. Cerium ion conducting solid electrolyte[J]. J Solid State Chem, 2003, 171(1-2): 387–390.
[14] TAMURA S, YAMAMOTO S, IMANAKA N. New type of trivalent gadolinium ion conducting solid electrolyte[J]. J New Mater  
Electrochem, 2008, 11(1): 1–4. 
[15] KATAYAMA H, TAMURA S, IMANAKA N. New bismuth ion conducting solid electrolyte[J]. Solid State Ionics, 2011, 192(1): 134–136.
[16] HASEGAWA Y, TAMURA S, IMANAKA N, et al. New trivalent ion conducting solid electrolyte with the nasicon type structure[J]. J Alloys Compd, 2004, 379(1–2): 262–265.
[17] HASEGAWA Y, TAMURA S, IMANAKA N, et al. Trivalent praseodymium ion conducting solid electrolyte composite with nasicon type structure[J]. J Alloys Compd, 2004, 375(1-2): 212–216.
[18] 刘佳.以(Al0.2Zr0.8)20/19Nb(PO4)3为固体电解质的电化学传感器的研究[D].唐山:河北联合大学, 2013.
LIU Jia. Study on electrochemical sensor of aluminum solid electrolyte (Al0.2Zr0.8)20/19Nb(PO4)3 (in Chinese, dissertation). Tangshan: Hebei United University, 2013.
[19] 史明, 戴磊, 周会珠,等. NASICON型固体电解质(Al0.2Zr0.8)(4-x)/3.8NbP3–xMoxO12的合成及其电化学性能研究[J]. 陶瓷学报, 2017, 38(3): 342–345.
SHI Ming, DAI Lei, ZHOU Huizhu, et al. J Ceram(in Chinese), 2017, 38(3): 342–345.
[20] HASEGAWA Y, IMANAKA N. Effect of the lattice volume on the Al3+ ion conduction in nasicon type solid electrolyte[J]. Solid State Ionics, 2005, 176(31–34): 2499–2503. 
[21] IMANAKA N, OKAMOTO K, ADACHI G. A new type of chlorine gas sensor with the combination of Cl− anion and Al3+ cation conducting solid electrolytes[J]. Mater. Lett, 2003, 57(13–14): 1966–1969.
[22] NAGAI T, TAMURA S, IMANAKA N. Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids[J]. Sens Actuators B: Chem, 2010, 147(2): 735–740.
[23] INABA Y, TAMURA S, IMANAKA N. New type of sulfur diozide gas sensor based on bivalent Al3+ ion conducting solid electrolyte[J] Solid State Ionics, 2008,179(27–32): 1625–1627. 
[24] TAMURA S, HASEGAWA I, IMANAKA N, et al. Carbon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonate based auxiliary electrode[J]. Sensors and Actuators B: Chem, 2005, 108(1-2): 359–363. 
[25] 华正伸, 冯晓晶, 王晓然,等. 离子掺杂对Nasicon型化合物电化学性能的影响[J]. 硅酸盐学报, 2017, 45(6):756–764.
HUA Zhengshen, FENG Xiaojing, WANG Xiaoran, et al. J Chin Ceram Soc, 2017, 45(6): 756–764.
[26] ADAMU M, KALE G M. Novel Sol–Gel Synthesis of MgZr4P6O24 composite solid electrolyte and newer insight into the Mg2+-ion conducting properties using impedance spectroscopy[J]. J Phys Chem C, 2016, 120(32): 17909–17915.
[27] ZHANG P, MATSUI M, TAKEDA Y, et al. Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped nasicon-type LiTi2(PO4)3[J]. Solid State Ionics, 2014, 263: 27–32.
[28] ZHANG P, WANG H, SI Q, et al. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped nasicon-type LiTi2(PO4)3[J]. Solid State Ionics, 2015, 272: 101–106.
[29] WANG D, ZHONG G, LI Y, et al. Enhanced ionic conductivity of Li3.5Si0.5P0.5O4 with addition of lithium borate[J]. Solid State Ionics, 2015, 283: 109–114.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com