首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Co/Ni掺杂SrTi0.3Fe0.7O3–钙钛矿电极材料制备及性能
作者:倪维婕1 朱腾龙1 陈晓阳1  秦1 韩敏芳2 
单位:(1. 南京理工大学化工学院 南京210094 2. 清华大学能源与动力工程系 电力系统及发电设备控制和仿真国家重点实验室 北京100084) 
关键词:固体氧化物燃料电池 钙钛矿电极材料 铁酸锶钛 
分类号:TQ174.1
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 以SrTi0.3Fe0.7O3–δ (STF)为基础,研究了B位Co、Ni掺杂SrTi0.3(Fe1–xCox)0.7O3–δ (STFC)和SrTi0.3(Fe1–yNiy)0.7O3–δ (STFN)钙钛矿氧化物的成相过程及其在还原气氛中的结构演变规律,并进一步表征了其用于固体氧化物燃料电池(SOFC)对称电极的电化学性能。结果表明:Co和Fe可以在B位无限互溶,形成SrTi0.3Fe0.7O3–δ–SrTi0.3Co0.7O3–δ固溶体系;但当Ni替换Fe的比例超过约30%时就会出现明显的Sr2Fe2O5杂相。在还原气氛中,STFC和STFN的结构稳定性随Co或Ni掺杂量的增加而降低,并逐渐由ABO3结构转变为富AO相的钙钛矿衍生结构,同时伴随着Co基或Ni基金属相的生成。在850 ℃和加湿氢气燃料下,La0.8Sr0.2Ga0.83Mg0.17O3–δ电解质支撑SrTi0.3(Fe0.9Ni0.1)0.7O3–δ和SrTi0.3(Fe0.9Co0.1)0.7O3–δ对称电池的最大功率密度分别达到约1.00和0.87 W/cm2,表现出较好的电化学性能和实用前景。

 Cobalt and nickel substituted SrTi0.3Fe0.7O3–δ perovskite oxides, i.e., SrTi0.3(Fe1–xCox)0.7O3–δ (STFC) and SrTi0.3(Fe1–yNiy)0.7O3–δ(STFN), were synthesized. Their structure evolutions in reducing atmospheres were investigated, and their electrochemical properties as symmetrical electrodes in solid oxide fuel cell were characterized. The results show that solid solutions from SrTi0.3Fe0.7O3–δ to SrTi0.3Co0.7O3–δ are effectively synthesized, and impurity phases of Sr2Fe2O5 occur in STFN system with a substituted nickel ratio of > 30% to iron. After reduction in reducing atmosphere, the structure stability of STFC and STFN decreases with the increase of doping amount of Co or Ni, and the ABO3 structurechanges to AO-rich perovskite-derived structure and cobalt- or nickel-based metallic phases appear. SrTi0.3(Fe0.9Ni0.1)0.7O3–δ and SrTi0.3(Fe0.9Co0.1)0.7O3–δ symmetrical cells with La0.8Sr0.2Ga0.83Mg0.17O3–δ electrolyte supports both have the maximum power densities of 1.00 and 0.87W/cm2, respectively, in wet hydrogen fuel, which could be used for the promising applications.

 
基金项目:
国家自然科学基金(51702163);江苏省自然科学基金(BK20170847)。
作者简介:
参考文献:

 [1] 韩敏芳, 彭苏萍. 碳基燃料固体氧化物燃料电池发展前景[J]. 中国工程科学, 2013, 15: 4–6.

HAN Minfang, PENG Suping. Eng Sci(in Chinese), 2013, 15: 4–6. 
[2] 韩敏芳, 张永亮. 固体氧化物燃料电池中的陶瓷材料[J]. 硅酸盐学报, 2017, 45: 1548–1554.
HAN Minfang, ZHANG Yongliang. J Chin Ceram Soc, 2017, 45: 1548–1554.
[3] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2: 320–323.
[4] GOODENOUGH J B, HUANG Y H. Alternative anode materials for solid oxide fuel cells[J]. J Power Sources, 2007, 173: 1–10.
[5] LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010, 22: 5478–5482.
[6] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14: 205–209.
[7] CHO S, FOWLER D E, MILLER E C, et al. Fe-substituted SrTiO3−δ–Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells[J]. Energy Environme Sci, 2013, 6: 1850.
[8] ZHU T, FOWLER D E, POEPPELMEIER K R, et al. Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes[J]. J Electrochem Soc, 2016, 163: F952–F961.
[9] KIM G, LEE S, SHIN J Y, et al. Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM[J]. Electrochem Solid-State Lett, 2009, 12: B48.
[10] IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nat Energy, 2016, 1: 15014.
[11] XIAO G, JIN C, LIU Q, et al. Ni modified ceramic anodes for solid oxide fuel cells[J]. J Power Sources, 2012, 201: 43–48.
[12] MADSEN B D, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166: 64–67.
[13] SHIN T H, OKAMOTO Y, IDA S, et al. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells[J]. Chemistry, 2012, 18: 11695–11702.
[14] YANG C, YANG Z, JIN C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Adv Mater, 2012, 24: 1439–1443.
[15] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5: 916–923.
[16] SUN Y, LI J, ZENG Y, et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes[J]. J Mater Chem A, 2015, 3: 11048–11056.
[17] DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6–δ with in situ exsolved nanoparticle catalyst[J]. ACS nano, 2016, 10: 8660–8669.
[18] ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2: 478–496.
[19] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Communicat, 2015, 6: 8120.
[20] BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La,Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011,   196: 3089–3094.
[21] ROTHSCHILD A, MENESKLOU W, TULLER H L, et al. Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions[J]. Chem Mater, 2006, 18: 3651–3659.
[22] GLASER R, ZHU T, TROIANI H, et al. The enhanced electrochemical response of Sr(Ti0.3Fe0.7Ru0.07)O3−δ anodes due to exsolved Ru–Fe nanoparticles[J]. J Mater Chem A, 2018, 6: 5193–5201.
[23] ZHANG S-L, WANG H, LU M Y, et al. Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environm Sci, 2018
[24] NENNING A, VOLGGER L, MILLER E, et al. The electrochemical properties of Sr(Ti, Fe)O3–δ for anodes in solid oxide fuel cells[J]. J Electrochem Soc, 2017, 164: F364–F371.
[25] CHEN X, NI W, WANG J, et al. Exploration of Co–Fe alloy precipitation and electrochemical behavior hysteresis using Lanthanum and cobalt co-substituted SrFeO3–δ SOFC anode[J]. Electrochim Acta, 2018, 277: 226–234.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com