[1] 韩敏芳, 彭苏萍. 碳基燃料固体氧化物燃料电池发展前景[J]. 中国工程科学, 2013, 15: 4–6.
HAN Minfang, PENG Suping. Eng Sci(in Chinese), 2013, 15: 4–6.
[2] 韩敏芳, 张永亮. 固体氧化物燃料电池中的陶瓷材料[J]. 硅酸盐学报, 2017, 45: 1548–1554.
HAN Minfang, ZHANG Yongliang. J Chin Ceram Soc, 2017, 45: 1548–1554.
[3] TAO S, IRVINE J T. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2: 320–323.
[4] GOODENOUGH J B, HUANG Y H. Alternative anode materials for solid oxide fuel cells[J]. J Power Sources, 2007, 173: 1–10.
[5] LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs[J]. Adv Mater, 2010, 22: 5478–5482.
[6] SENGODAN S, CHOI S, JUN A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nat Mater, 2015, 14: 205–209.
[7] CHO S, FOWLER D E, MILLER E C, et al. Fe-substituted SrTiO3−δ–Ce0.9Gd0.1O2 composite anodes for solid oxide fuel cells[J]. Energy Environme Sci, 2013, 6: 1850.
[8] ZHU T, FOWLER D E, POEPPELMEIER K R, et al. Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes[J]. J Electrochem Soc, 2016, 163: F952–F961.
[9] KIM G, LEE S, SHIN J Y, et al. Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM[J]. Electrochem Solid-State Lett, 2009, 12: B48.
[10] IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nat Energy, 2016, 1: 15014.
[11] XIAO G, JIN C, LIU Q, et al. Ni modified ceramic anodes for solid oxide fuel cells[J]. J Power Sources, 2012, 201: 43–48.
[12] MADSEN B D, KOBSIRIPHAT W, WANG Y, et al. Nucleation of nanometer-scale electrocatalyst particles in solid oxide fuel cell anodes[J]. J Power Sources, 2007, 166: 64–67.
[13] SHIN T H, OKAMOTO Y, IDA S, et al. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells[J]. Chemistry, 2012, 18: 11695–11702.
[14] YANG C, YANG Z, JIN C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Adv Mater, 2012, 24: 1439–1443.
[15] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nat Chem, 2013, 5: 916–923.
[16] SUN Y, LI J, ZENG Y, et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes[J]. J Mater Chem A, 2015, 3: 11048–11056.
[17] DU Z, ZHAO H, YI S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6–δ with in situ exsolved nanoparticle catalyst[J]. ACS nano, 2016, 10: 8660–8669.
[18] ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2: 478–496.
[19] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Communicat, 2015, 6: 8120.
[20] BIERSCHENK D M, POTTER-NELSON E, HOEL C, et al. Pd-substituted (La,Sr)CrO3−δ–Ce0.9Gd0.1O2−δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. J Power Sources, 2011, 196: 3089–3094.
[21] ROTHSCHILD A, MENESKLOU W, TULLER H L, et al. Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions[J]. Chem Mater, 2006, 18: 3651–3659.
[22] GLASER R, ZHU T, TROIANI H, et al. The enhanced electrochemical response of Sr(Ti0.3Fe0.7Ru0.07)O3−δ anodes due to exsolved Ru–Fe nanoparticles[J]. J Mater Chem A, 2018, 6: 5193–5201.
[23] ZHANG S-L, WANG H, LU M Y, et al. Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environm Sci, 2018
[24] NENNING A, VOLGGER L, MILLER E, et al. The electrochemical properties of Sr(Ti, Fe)O3–δ for anodes in solid oxide fuel cells[J]. J Electrochem Soc, 2017, 164: F364–F371.
[25] CHEN X, NI W, WANG J, et al. Exploration of Co–Fe alloy precipitation and electrochemical behavior hysteresis using Lanthanum and cobalt co-substituted SrFeO3–δ SOFC anode[J]. Electrochim Acta, 2018, 277: 226–234.
|