首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Zn1–xCax(Ti0.6Zr0.4)Nb2O8陶瓷的微波介电性能
作者:谢志翔1 3 黄雨佳1 李月明1 2 3 沈宗洋1 2 宋福生1 李志科1 
单位:(1. 景德镇陶瓷大学材料科学与工程学院 江西 景德镇 333403 2. 中国轻工业功能陶瓷材料重点实验室 江西 景德镇 333403 3. 江西省能量存储与转换陶瓷材料工程实验室 江西 景德镇 333403) 
关键词:微波介质陶瓷 钙离子取代 显微结构 介电性能 
分类号:TQ174
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用传统固相反应法制备Zn1–xCaxTi0.6Zr0.4Nb2O8 (x=0.05, 0.10, 0.20, 0.30)微波介质陶瓷,研究了不同Ca2+取代量对Zn1–xCaxTi0.6Zr0.4Nb2O8陶瓷的物相组成、显微结构及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其晶体结构、微观形貌及微波介电性能进行表征。结果表明:Ca2+取代Zn2+会导致CaNb2O6第二相的形成,且随Ca2+含量的增加,ZnTiNb2O8相含量减少;CaNb2O6相的含量增加,导致Zn1–xCaxTi0.6Zr0.4Nb2O8陶瓷的介电常数和品质因数减小,谐振频率温度系数向正方向移动。当x=0.3时,Zn1-xCaxTi0.6Zr0.4Nb2O8陶瓷在1 140 ℃烧结并获得最佳微波介电性能:εr=30.42,Q?f=47 280 GHz,τf=–25.37×10–6/℃。

 Zn1–xCaxTi0.6Zr0.4Nb2O8(x = 0.05, 0.10, 0.20, 0.30) microwave dielectric ceramics were prepared by a solid-state reaction method. The effect of Ca2+ substitution amount on the phase composition, microstructure and microwave dielectric properties of Zn1–xCaxTi0.6Zr0.4Nb2O8 ceramics was investigated by X-ray diffraction, scanning electron microscopy and network analysis, respectively. The results show that Ca2+ substitution of Zn2+ leads to the formation of the second phase of CaNb2O6, the content of ZnTiNb2O8 phase decreases and the content of CaNb2O6 phase increases with the increase of Ca2+ content, leading to the decrease of dielectric constant εr and quality factor Q?f of Zn1–xCaxTi0.6Zr0.4Nb2O8 ceramics, and the temperature coefficient of resonant frequency τf shifting to a positive direction. The optimum microwave dielectric properties (i.e., εr=30.42, Q?f=47 280 GHz, τf= –25.37×10–6/℃) are obtained when Zn1–xCaxTi0.6Zr0.4Nb2O8 ceramic is sintered at 1 140 ℃ as x=0.3.

 
基金项目:
江西省“赣鄱英才555工程”领军人才计划;国家自然科学基金(51402136);江西省自然科学基金(20171BAB216008)资助。
作者简介:
参考文献:
[1] 刘庆林, 唐斌, 李皓, 等. Zn0.7Co0.3(Ti1–xSnx)Nb2O8陶瓷微波介电性能研究[J]. 压电与声光, 2015(1): 64–67.
LIU Qinglin, TANG Bin, LI Hao, et al. Piezo Acoustoopt (in Chinese), 2015(1): 64–67.
[2] LIN W Y, SPEYER R F, HACKENBERGER W S, et al. Microwave properties of Ba2Ti9O20 doped with zirconium and tin oxides[J]. Cheminform, 2010, 82(5): 1207–1211.
[3] LAISHRAM R, GAUR R, SINGH K C, et al. Control of coring effect in BaTi4O9 microwave dielectric ceramics by doping with Mn4+[J]. Ceram Int, 2016, 42(4): 5286–5290.
[4] PAMU D, RAO G L N, RAJU K C J. Enhanced microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics with the addition of its own nanoparticles[J]. J Am Ceram Soc, 2012, 95(1): 126–132.
[5] KAWASHIMA S, NISHIDA M, UEDA I, et al. Ba (Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies[J]. J Am Ceram Soc, 2010, 66(6): 421–423.
[6] 王利青, 刘亚云. CaTiO3–LaAlO3微波介质陶瓷的研究进展[J]. 硅酸盐通报, 2014, 33(1): 103–106.
WANG Liqing, LIU Yayun. Bull Chin Ceram Soc (in Chinese), 2014, 33(1): 103–106.
[7] KIM D, HONG K S. Phase relations and microwave dielectric properties of ZnNb2O6–TiO2[J]. J Mater Res, 2000, 15(6):1331–1335.
[8] HUANG C L, HUANG S H, LEE R Z. The microwave dielectric materials of (Zn1–xMgx)TiNb2O8 for electroceramics devices applications[J]. Key Eng Mater, 2013, 547: 49–55.
[9] ZHOU D, LI W B, XI H H, et al. Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system[J]. J Mater Chem C, 2015, 3(11): 2582–2588.
[10] FANG Z, TANG B, SI F, et al. Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3–xCaxTiO6, system (x=0.00-0.18)[J]. Ceram Int, 2017, 43(2): 1682–1687.
[11] GEORGE S, SEBASTIAN M T. Microwave dielectric properties of novel temperature stable high Q Li2Mg1–xZnxTi3O8 and Li2A1–xCaxTi3O8(A=Mg, Zn) ceramics[J]. J Eur Ceram Soc, 2010, 30(12): 2585–2592.
[12] LIN Y J, WANG S F, LAI B C, et al. Densification, microstructure evolution, and microwave dielectric properties of Mg1–xCaxZrTa2O8 ceramics[J]. J Eur Ceram Soc, 2017, 37(8): 2825–2831.
[13] LEE H J, HONG K S, KIM S J, et al. Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn)[J]. Mater Res Bull, 1997, 32(7): 847–855.
[14] 张岭. ZnO–Nb2O5–TiO2系微波介质陶瓷低温烧结特性的研究[D]. 武汉: 华中科技大学, 2010.
ZHANG Ling. Research on the low-sintering behavior of microwave dielectric ZnO-Nb2O5-TiO2 ceramics (in Chinese, dissertation). Wuhan: Huazhong University of Science and Technology, 2010
[15] VALANT M, SUVOROV D, RAWN, C J. Intrinsic reasons for variations in dielectric properties of Ba6–3xR8+2xTi18O54(R=LA–Gd) solid solutions[J]. Jpn J Appl Phys, 1999, 38: 2820–2826.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com