首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
离子液体辅助合成α-Fe2O3纳米棒及其气敏性能
作者: 帅1  蒙1  旭1 解丽丽1 2 朱志刚1 2 郑嘹赢3 
单位:(1. 上海第二工业大学工学部环境与材料工程学院 上海 201209 2. 上海第二工业大学资源循环科学与工程中心 上海 201209 3中国科学院上海硅酸盐研究所 上海 200050) 
关键词:水热合成法 六水氯化铁 1-丁基-3-甲基咪唑氯化物 硫化氢 
分类号:0649
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用水热合成法和热生长法,以六水氯化铁(FeCl3•6H2O)为铁源、氢氧化钠(NaOH)为沉淀剂、离子液体1-丁基-3-甲基咪唑氯化物([Bmim]Cl)为表面活性剂,两步合成了α-Fe2O3纳米棒,研究了沉淀剂NaOH和[Bmim]Cl添加量对产物形貌结构的影响,并且研究不同[Bmim]Cl添加量合成的α-Fe2O3纳米棒的气敏性能,结合能带理论分析了传感器的气敏响应机理。结果表明:当添加0.541 g FeCl3•6H2O和0.8 g NaOH,[Bmim]Cl的量为1 mmol时可以生成形貌均匀,分散性好,比表面积大的纯相α-Fe2O3纳米棒。气敏测试结果表明,其在工作温度为200 ℃下对5 μL•L–1的硫化氢气体的灵敏度达到8.4,检测范围达到0.1 ~ 20 μL•L–1,并且具有良好的稳定性和选择性,有望应用于工业和生活中低浓度的硫化氢气体检测。

 α-Fe2O3 nanorods were synthesized via hydrothermal synthesis and thermal growth with ferric chloride hexahydrate (FeCl3•6H2O) as an iron source, sodium hydroxide(NaOH) as a precipitating agent and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as a surfactant. The influence of concentration of NaOH/[Bmim]Cl on the morphology of the specimens was investigated. The gas sensitivity and response mechanism of α-Fe2O3 nanorods synthesized at different amounts of ionic liquids were analyzed based on the band theory. The results show that pure α-Fe2O3 nanorods with uniform morphology, good dispersibility and large specific surface area can be formed when 0.541 g FeCl3•6H2O and 0.8 g NaOH are added and the amount of [Bmim]Cl is 1 mmol. The sensitivity to 5 μL•L–1 hydrogen sulfide gas is 8.4, and the detection range is 0.1–20 μL•L–1, operating at 200 ℃. The α-Fe2O3 nanorods as a sensor have a good stability and a selectivity for hydrogen sulfide detection at low concentrations.

基金项目:
国家自然科学基金(61471233);中国科学院无机功能材料与器件重点实验室开放课题(KLIFMD201602);上海市高原学科-环境科学与工程(资源循环科学与工程)资助。
作者简介:
参考文献:

 [1] DOCKERY D W, SCHWARTZ J, SPENGLER J D. Air pollution and daily mortality: associations with particulates and acid aerosols[J]. Environ Res, 1992, 59(2): 362–373.

[2] RAMGIR N S, SHARMA P K, DATTA N, et al. Room temperature H2S sensor based on Au modified ZnO nanowires[J]. Sensor Actuat B-Chem, 2013, 186(186): 718–726. 
[3] TAO W H, TSAI C H. H2S sensing properties of noble metal doped WO3, thin film sensor fabricated by micromachining[J]. Sensor Actuat B-Chem, 2002, 81(2): 237–247. 
[4] YAMAZOE N. Toward innovations of gas sensor technology[J]. Sensor Actuat B-Chem, 2005, 108(1-2): 2–14. 
[5] SAIYED H N. Hydrogen sulfide: Human health aspects, concise international chemical assessment document No. 53[J]. Electr Commun Jpn, 1983, 66(3): 52–60. 
[6] WANG Y, WANG Y, CAO J, et al. Low-temperature H2S sensors based on Ag-doped alpha-Fe2O3 nanoparticles[J]. Sensor Actuat B-Chem, 2008, 131(1): 183–189. 
[7] SUN Z, YUAN H, LIU Z, et al. A Highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates[J]. Adv Mater, 2010, 17(24): 2993–2997. 
[8] YAO K, CARUNTU D, ZENG Z, et al. Parts per billion-level H2S detection at room temperature based on self-assembled In2O3 nanoparticles[J]. J Phys Chem C, 2009, 113(33): 14812–14817. 
[9] BARI R H, PATIL P P, PATIL S B, et al. Detection of H2S gas at lower operating temperature using sprayed nanostructured In2O3, thin films[J]. B Mater Sci, 2013, 36(6): 967–972. 
[10] SHEN Y, ZHANG B, CAO X, et al. Microstructure and enhanced H2S sensing properties of Pt-loaded WO3, thin films[J]. Sensor Actuat B-Chem, 2014, 193(3): 273–279. 
[11] DATTA N, RAMGIR N, KAUR M, et al. Vacuum deposited WO3, thin films based sub-ppm H2S sensor[J]. Mater Chem Phys, 2012, 134(2-3): 851–857. 
[12] IVERSEN K J, SPENCER M J S. Effect of ZnO nanostructure morphology on the sensing of H2S gas[J]. J Phys Chem C, 2013, 117(49): 26106–26118. 
[13] HOSSEINI Z S, MORTEZAALI A, ZAD A I, et al. Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures[J]. J Alloy Compd, 2015, 628: 222–229. 
[14] MEI L, CHEN Y, MA J. Gas sensing of SnO2 nanocrystals revisited: developing ultra-sensitive sensors for detecting the H2S leakage of biogas[J]. Sci Rep, 2014, 4: 6028.
[15] HU X B, ZHU Z G, LI Z H, et al. Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor[J]. Sensor Actuat B-Chem, 2018, 264: 139–149. 
[16] SUN Z, YUAN H, LIU Z, et al. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates[J]. Adv Mater, 2010, 17(24): 2993–2997. 
[17] ALAIE M M, JAHANGIRI M, RASHIDI A M, et al. A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide[J]. J Ind Eng Chem, 2015, 29: 97–103. 
[18] BAI S, CHEN C, LUO R, et al. Synthesis of MoO3 /reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sensor Actuat B-Chem, 2015, 216: 113–120. 
[19] CHO S, KIM S, JUNG D W, et al. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity[J]. Nanoscale, 2011, 3(9): 3841–3848. 
[20] ZHANG J, LIU X, WANG L, et al. Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles[J]. Nanotechnology, 2011, 22(18): 185501. 
[21] WANG G, GOU X, HORVAT J, et al. Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application[J]. J Phys Chem C, 2008, 112(39): 15220–15225. 
[22] DENG J, MA J, MEI L, et al. Porous α-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity[J]. J Mater Chem A, 2013, 1(40): 12400–12403.
[23] MA J, MEI L, CHEN Y, et al. α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas[J]. Nanoscale, 2013, 5(3): 895–898.
[24] LI Z, HUANG Y, ZHANG S, et al. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit[J]. J Hazard Mater, 2015, 300: 167–174. 
[25] HUANG Y, CHEN W, ZHANG S, et al. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature[J]. Appl Surf Sci, 2015, 351: 1025–1033. 
[26] MA J, MEI L, CHEN Y, et al. α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas[J]. Nanoscale, 2013, 5(3): 895–898. 
[27] HU X B, ZHU Z G, CHEN C, et al. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature[J]. Sensor Actuat B-Chem, 2017, 253: 809–817. 
[28] PAN S, HU X B, SONG R M, et al. Ionic liquid assisted synthesis of α-Fe2O3 nanospheres based on potassium acetate solution and their gas-sensing properties[J]. Chem J Chinese U, 2018, 39(8): 1631–1639.
[29] PATIL D, PATIL V, PATIL P. Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods[J]. Sensor Actuat B-Chem, 2011, 152(2): 299–306.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com