[1] DOCKERY D W, SCHWARTZ J, SPENGLER J D. Air pollution and daily mortality: associations with particulates and acid aerosols[J]. Environ Res, 1992, 59(2): 362–373.
[2] RAMGIR N S, SHARMA P K, DATTA N, et al. Room temperature H2S sensor based on Au modified ZnO nanowires[J]. Sensor Actuat B-Chem, 2013, 186(186): 718–726.
[3] TAO W H, TSAI C H. H2S sensing properties of noble metal doped WO3, thin film sensor fabricated by micromachining[J]. Sensor Actuat B-Chem, 2002, 81(2): 237–247.
[4] YAMAZOE N. Toward innovations of gas sensor technology[J]. Sensor Actuat B-Chem, 2005, 108(1-2): 2–14.
[5] SAIYED H N. Hydrogen sulfide: Human health aspects, concise international chemical assessment document No. 53[J]. Electr Commun Jpn, 1983, 66(3): 52–60.
[6] WANG Y, WANG Y, CAO J, et al. Low-temperature H2S sensors based on Ag-doped alpha-Fe2O3 nanoparticles[J]. Sensor Actuat B-Chem, 2008, 131(1): 183–189.
[7] SUN Z, YUAN H, LIU Z, et al. A Highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates[J]. Adv Mater, 2010, 17(24): 2993–2997.
[8] YAO K, CARUNTU D, ZENG Z, et al. Parts per billion-level H2S detection at room temperature based on self-assembled In2O3 nanoparticles[J]. J Phys Chem C, 2009, 113(33): 14812–14817.
[9] BARI R H, PATIL P P, PATIL S B, et al. Detection of H2S gas at lower operating temperature using sprayed nanostructured In2O3, thin films[J]. B Mater Sci, 2013, 36(6): 967–972.
[10] SHEN Y, ZHANG B, CAO X, et al. Microstructure and enhanced H2S sensing properties of Pt-loaded WO3, thin films[J]. Sensor Actuat B-Chem, 2014, 193(3): 273–279.
[11] DATTA N, RAMGIR N, KAUR M, et al. Vacuum deposited WO3, thin films based sub-ppm H2S sensor[J]. Mater Chem Phys, 2012, 134(2-3): 851–857.
[12] IVERSEN K J, SPENCER M J S. Effect of ZnO nanostructure morphology on the sensing of H2S gas[J]. J Phys Chem C, 2013, 117(49): 26106–26118.
[13] HOSSEINI Z S, MORTEZAALI A, ZAD A I, et al. Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures[J]. J Alloy Compd, 2015, 628: 222–229.
[14] MEI L, CHEN Y, MA J. Gas sensing of SnO2 nanocrystals revisited: developing ultra-sensitive sensors for detecting the H2S leakage of biogas[J]. Sci Rep, 2014, 4: 6028.
[15] HU X B, ZHU Z G, LI Z H, et al. Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor[J]. Sensor Actuat B-Chem, 2018, 264: 139–149.
[16] SUN Z, YUAN H, LIU Z, et al. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates[J]. Adv Mater, 2010, 17(24): 2993–2997.
[17] ALAIE M M, JAHANGIRI M, RASHIDI A M, et al. A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide[J]. J Ind Eng Chem, 2015, 29: 97–103.
[18] BAI S, CHEN C, LUO R, et al. Synthesis of MoO3 /reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sensor Actuat B-Chem, 2015, 216: 113–120.
[19] CHO S, KIM S, JUNG D W, et al. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity[J]. Nanoscale, 2011, 3(9): 3841–3848.
[20] ZHANG J, LIU X, WANG L, et al. Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles[J]. Nanotechnology, 2011, 22(18): 185501.
[21] WANG G, GOU X, HORVAT J, et al. Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application[J]. J Phys Chem C, 2008, 112(39): 15220–15225.
[22] DENG J, MA J, MEI L, et al. Porous α-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity[J]. J Mater Chem A, 2013, 1(40): 12400–12403.
[23] MA J, MEI L, CHEN Y, et al. α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas[J]. Nanoscale, 2013, 5(3): 895–898.
[24] LI Z, HUANG Y, ZHANG S, et al. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit[J]. J Hazard Mater, 2015, 300: 167–174.
[25] HUANG Y, CHEN W, ZHANG S, et al. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature[J]. Appl Surf Sci, 2015, 351: 1025–1033.
[26] MA J, MEI L, CHEN Y, et al. α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas[J]. Nanoscale, 2013, 5(3): 895–898.
[27] HU X B, ZHU Z G, CHEN C, et al. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature[J]. Sensor Actuat B-Chem, 2017, 253: 809–817.
[28] PAN S, HU X B, SONG R M, et al. Ionic liquid assisted synthesis of α-Fe2O3 nanospheres based on potassium acetate solution and their gas-sensing properties[J]. Chem J Chinese U, 2018, 39(8): 1631–1639.
[29] PATIL D, PATIL V, PATIL P. Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods[J]. Sensor Actuat B-Chem, 2011, 152(2): 299–306.
|