[1] WANG Z C, ALDINGER F, RIEDEL R. Novel silicon–boron–carbon–nitrogen materials thermally stable up to 2 200 ℃[J]. J Am Ceram Soc, 2001, 84(10): 2179–2183.
[2] LIU Y, PENG S, CUI Y J, et al. Fabrication and properties of precursor–derived SiBN ternary ceramic fibers[J]. Mater Des, 2017, 128: 150–156.
[3] JI X Y, WANG S S, SHAO C W, et al. High–temperature corrosion behavior of SiBNC fibers for aerospace applications[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19712–19720.
[4] ZHANG C Y, LIU Y, CUI Y J, et al. Synthesis and characterization of a novel preceramic polymer for SiBNC ceramic fibers[J], Fiber Polym, 2018, 19: 956–964.
[5] Bill J, Kamphowe TW, Müller A, et al. Precursor-derived Si–(B–)C–N ceramics: thermolysis, amorphous state and crystallization[J]. Appl Organomet Chem. 2001, 15(10): 777–793.
[6] ZHANG C Y, LIU Y, CUI Y J, et al. Comparison of effects of nitrogen sources on the structures and properties of SiBNC ceramic fiber precursors[J]. Ceram Int, 2018, 44(12): 14878–14883.
[7] JANSEN M, JASCHKE B, JASCHKE T. Amorphous multinary ceramics in the Si–B–N–C system[J]. Struct Bond, 2002, 101: 137-191.
[8] GE K K, YE L, Han W J, et al. Pyrolysis of polyborosilazane and its conversion into SiBN ceramic[J]. Adv Appl Ceram, 2014, 113(6): 367–371.
[9] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.
[10] BUTCHEREIT E, NICKEL K G. Precursor-derived Si–B–C–N ceramics: oxidation kinetics[J]. Ultra-High Temp Ceram, 2001, 84(10): 2184–2188.
[11] HANNEMANN A, SCHÖN J C, JANSEN M, et al. Modeling amorphous Si3B3N7: structure and elastic properties[J]. Phys Rev B, 2004, 70(14): 1–13.
[12] MERA G, TAMAYO A, NGUYEN H, et al. Nanodomain structure of carbon-rich silicon carbonitride polymer-derived ceramics[J]. J Am Ceram Soc, 2010, 93(4): 1169–1175.
[13] MERA G, RIEDEL R, POLI F, et al. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides)[J]. J Eur Ceram Soc, 2009, 29(13): 2873–2883.
[14] IWAMOTO Y, VÖLGER W, KROKE E, et al. Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors[J]. J Am Ceram Soc, 2001, 84(10): 2170–2178.
[15] WÜLLEN L, JANSEN M. The role of carbon in the nitridic high performance ceramics in the system Si–B–N–C[J]. Solid State Nucl Mag, 2005, 27(1-2): 90–98.
[16] JÄSCHKE T, JANSEN M. Synthesis and characterization of new amorphous Si/B/N/C ceramics with increased carbon content through single-source precursors[J]. C R Chim, 2004, 7(5): 471–482.
[17] JASCHKE T, JANSEN M. Improved durability of Si/B/N/C random inorganic networks[J]. J Eur Ceram Soc, 2005, 25(2): 211–220.
[18] GERVAIS C, BABONNEAU F, RUWISCH L, et al. Solid-state NMR investigations of the polymer route to SiBNC ceramics[J]. Can J Chem, 2003, 81(11): 1359–1369.
[19] ZEM A, MAYER J, JANAKIRAMAN N, et al. Quantitative EFTEM study of precursor-derived Si–B–C–N ceramics[J]. J Eur Ceram Soc, 2002, 22(9-10): 1621–1629.
[20] RAVI KUMAR N V, PRINZ S, CAI Y, et al. Crystallization and creep behavior of Si–B–C–N ceramics[J]. Acta Mater, 2005, 53(17): 4567–4578.
[21] GAO Y, MERA G, NGUYEN H, et al. Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBNC polymer-derived ceramics. Part I: Low temperature thermal transformation[J]. J Eur Ceram Soc, 2012, 32(9): 1857–1866.
[22] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351.
WANG Weihua. Prog Phys(in Chinese), 2013, 33(5): 177–351.
[23] 熊家炯. 材料设计[M]. 天津:天津大学出版, 2000: 1–32.
[24] DR M,GEK U. Density functional theory[M]. Berlin: Springer–Vertag, 1990.
[25] HOU T J, ZHU L L, XU X J. Adsorption and diffusion of benzene in ITQ–1 type zeolite: grand canonical monte carlo and molecular dynamics simulation study[J]. J Phys Chem B, 2000, 104(39): 9356–9364.
[26] HOU T J, ZHANG W, XU X J. Binding affinities for a series of selective inhibitors of gelatinase–a using molecular dynamics with a linear interaction energy approach[J]. J Phys Chem B, 2001, 105(22): 5304–5315.
[27] LIU Y, CHEN K Z, DONG F B, et al. Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers[J]. Ceram Int, 2018, 44(9): 10199–10203.
[28] SCHÖN J C, HANNEMANNA A, SETHIB G, et al. Modelling structure and properties of amorphous silicon boron nitride ceramics[J]. Processing and Application of Ceramics, 2011, 5(2): 49–61.
[29] JANSEN M, SCHÖN J C, VAN W L. The Route to the structure determination of amorphous solids: a case study of the ceramic Si3B3N7[J]. Angew Chem Int Ed, 2006, 45(26): 4244–63.
[30] HANNEMANNA A, SCHÖN J C, JANSEN M. Nonequilibrium dynamics in amorphous Si3B3N7[J]. J Phys Chem B, 2005, 109: 1177–11776.
[31] SONG W Y, QUAN W W, ZHOU Y, et al. Effect of thermal initiator concentration on piezoresistivity of polymer-derived amorphous silicon carbonitrides[J]. Acta Phys Sin, 2008, 57(10): 6540–6544.
[32] KROLL P, HOFFMANN R. Silion boron nitrides: hypothetical polymophs of Si3B3N7[J]. Angew Chem Int Edit, 1998, 37(18): 2527–2530.
[33] 陆爱江. 高温隐形材料SiBN陶瓷[J]. 物理学报, 2013, 62(21): 1–5.
LU Aijiang. Acta Phys Sin(in Chinese), 2013, 62(21): 1–5.
[34] MATSUNGA K, IWAMOTO Y. Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron[J]. J Am Ceram Soc, 2001, 84(10): 2213–2219.
[35] GRIEBEL M, HAMAEKERS J. Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si–B–N[J]. Comput Mater Sci, 2007, 39(3): 502–517.
[36] AL–GHALITH J, DASMAHAPATRA A, KROLL P, et al. Compositional and structural atomistic study of amorphous Si–B–N networks of interest for high-performance coatings[J]. J Phys Chem C, 2016, 120(42): 24346–24353.
[37] KIM Y W, KIM S H, SONG I H, et al. Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction[J]. J Am Ceram Soc, 2005, 88(10): 2949–2951.
[38] BHARADWAJ L, FAN Y, ZHANG L, et al. Oxidation behavior of a fully dense polymer-derived amorphous silicon carbonitride ceramic[J]. J Am Ceram Soc, 2004, 87(3): 483–486.
[39] AN L, RIEDEL R, KONETSCHNY C, et al. Newtonian viscosity of amorphous silicon carbonitride at high temperature[J]. J Am Ceram Soc, 1998, 81(5): 1349–1352.
[40] ZIMMERMANN A, BAUER A, CHRIST M, et al. High-temperature deformation of amorphous Si–C–N and Si–B–C–N ceramics derived from polymers[J]. Acta Mater, 2002, 50: 1187–1196.
[41] LIU Y, FENG Y R, GONG H Y, et al. Electromagnetic wave absorption properties of nickel-containing polymer derived SiCN ceramics[J]. Ceram Int, 2018, 44(9): 10945–10950.
[42] SHAH S R, RAJ R. Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process[J]. Acta Mater, 2002, 50: 4093–4103.
[43] GOLCZWSKI J A. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors[J]. Int J Mater Res, 2006, 97(6): 729–736.
[44] GREGORI G, KLEEBE H J, BREQUEL H, et al. Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1 400 ℃[J]. J Non-Cryst Solids, 2005, 351(16–17): 1393–1402.
[45] RIEDEL R, GREINER A, MIEHE G, et al. The first crystalline solids in the ternary Si–C–N system[J]. Angew Chem Int Ed Engl, 1997, 36(6): 603–606.
[46] WANG H, LI Q, WANG H, et al. Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4[J]. J Phys Chem C, 2010, 114(18): 8609–8613.
[47] CHEN L C, CHEN K H, WEI S L, et al. Crystalline SiCN: a hard material rivals to cubic BN[J]. Thin Solid Films, 1999, 355: 112–116.
[48] SJÖSTRÖM H, HULTMAN L, SUNDGREN J E, et al. Structural and mechanical properties of carbon nitride CNx (0.2≤x≤0.35) films[J]. J Vac Sci Technol A, 1996, 14(1): 56–62.
[49] KAWAMURA T. Silicon carbide crystals grown in nitrogen atmosphere[J]. Mineral J, 1965, (4): 333–355.
[50] KROLL P, RIEDEL R, HOFFMANN R. Silylated carbodiimides in molecular and extended structures[J]. Phys Rev B, 1999, 60(5): 3126–3139.
[51] WANG C Z, WANG E G, DAI Q. First principles calculations of structural properties of β-Si3–nCnN4 (n=0, 1, 2, 3)[J]. J Appl Phys, 1998, 83(4): 1975–1978.
[52] BETRANHANDY E, CAPOU L, MATAR S F, et al. First principles search of hard materials within the Si–C–N ternary system[J]. Solid State Sci, 2004, 6(4): 315–323.
[53] 宋久旭, 杨银堂, 柴常春, 等. 掺氮3C–SiC电子结构的第一性原理研究[J]. 西安电子科技大学学报, 2008, 35(1): 87–91.
SONG Jiuxu, YANG Yintang, CHAI Changchun, et al. Xi'an Dianzi Keji Daxue Xuebao(in Chinese), 2008, 35(1): 87–91.
[54] WILFERT J, VON HAGEN R, FIZ R, et al. Electrospinning of preceramic polymers for the preparation of SiBNC felts and their modification with semiconductor nanowires[J]. J Mater Chem, 2012, 22(5): 2099–2104.
[55] ZHANG C Y, HAN K Q, LIU Y, et al. A novel high yield polyborosilazane precursor for SiBNC ceramic fibers[J]. Ceram Int, 2017, 43(13): 10576–10580.
[56] BALDUS P, JANSEN M, SPORN D. Ceramic fibers for matrix composites in high-temperature engine applications[J]. Science, 1999, 285(5428): 699–703.
[57] MÜLLER U, WEINMANN M, JANSEN M. Cl2MeSi–NH–BCl2 and ClMe2Si–NH–BCl2: novel processable single source precursors of amorphous Si/C/B/N ceramics[J]. J Mater Chem, 2008, 18(31): 3671–3679.
[58] HERMANN A M, WANG Y T, RAMAKRISHNAN P A, et al. Structure and electronic transport properties of Si–(B)–C–N ceramics[J]. J Am Ceram Soc, 2001, 84(10): 2260–2264.
[59] MOU S W, LIU Y, HAn K Q, et al. Synthesis and characterization of amorphous SiBNC ceramic fibers[J]. Ceram Int, 2015, 41(9): 11550–11554.
[60] RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2 000 ℃[J]. Nature, 1996, 382(6594): 796–798.
[61] BALDUS H, JANSEN M, WAGNER O. New materials in the system Si–(N,C)–B and their characterization[J]. Key Eng Mater, 1994, 89-91: 75–80.
[62] HOUSKA J, BILEK M M M, WARSCHKOW O, et al. Ab initio simulations of nitrogen evolution in quenched CNx and SiBNC amorphous materials[J]. Phys Rev B, 2005, 72(5): 1–6.
[63] MATSUNAGA K, IWAMOTO Y, IKUHARA Y. Atomic structure and diffusion in amorphous Si–B–C–N by molecular dynamics simulation[J]. Mater Trans, 2002, 43(7): 1506–1511.
[64] HAGENMAYER R M, MÜLLER U, BENMORE C J, et al. Structural studies on amorphous silicon boron nitride Si3B3N7: neutron contrast technique on nitrogen and high energy X-ray diffraction[J]. J Mater Chem, 1999, 9(11): 2865–2870.
[65] GRIGORIEW H, LECIEJEWICE J. X-ray and electron microscopy study of amorphous boron nitride films[J]. Thin Solid Fims, 1989, 172(2): L75-L79.
[66] HOUŠKA J, CAPEK J, VLCEK J, et al. Bonding statistics and electronic structure of novel Si–B–C–N materials: ab initio calculations and experimental verification[J]. J Vac Sci Technol A, 2007, 25(5): 1411–1416.
[67] LIAO N, XUE W, ZHOU H, et al. Numerical investigation into the nanostructure and mechanical properties of amorphous SiBNC ceramics[J]. RSC Adv, 2013, 3(34): 14458–14465.
[68] VLCEKl J, POTOCKY S, CIZEK J, et al. Reactive magnetron sputtering of hard Si–B–C–N films with a high-temperature oxidation resistance[J]. J Vac Sci Technol A, 2005, 23(6): 1513–1522.
[69] DAVIS C A. A simple model for the formation of compressive stress in thin films by ion bombardment[J]. Thin Solid Films, 1993, 226(1): 30–34.
[70] ULRICH S, THEEL T, SCHWAN J, et al. Magnetron–sputtered superhard materials[J]. Surf Coat Technol, 1997, 97(1–3): 45–59.
[71] HOUŠKA J, WARSCHKOW O, BILEK M M, et al. The effect of argon on the structure of amorphous SiBNC materials: an experimental and ab initio study[J]. J Phys: Condens Matter, 2006, 18(7): 2337–2348.
[72] DASMAHAPATRA A, MELETIS E, KROLL P. First principles modeling and simulation of Zr–Si–B–C–N ceramics: developing hard and oxidation resistant coatings[J]. Acta Mater, 2017, 125: 246–254.
[73] HOUSKA J, MARES P, SIMOVA V, et al. Dependence of characteristics of MSiBNC (M=Ti, Zr, Hf) on the choice of metal element: experimental and ab–initio study[J]. Thin Solid Films, 2016, 616: 359–365.
|