首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
SiBNC体系陶瓷的材料计算研究进展
作者:崔永杰     韩克清 余木火 
单位:(纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620) 
关键词:硅硼氮碳体系陶瓷 材料计算 分子动力学 第一性原理 
分类号:TQ174.1
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 SiBNC体系陶瓷具有优异的高温稳定性以及抗氧化性能,是硅基高性能陶瓷领域的研究热点。然而由于其具有非晶的微观结构特征,极大的限制了SiBNC体系陶瓷性能的设计、调控以及稳定化制备。近年来,第一性原理和分子动力学方法被报道用来计算研究SiBNC体系陶瓷性能与微观结构的相关性,取得大量实用的研究成果,综述了SiBNC体系陶瓷的材料计算研究进展。

 SiBNC ceramics exhibit superior high-temperature stability and oxidation resistance. Recent work focus on the investigation of silicon-based high-performance ceramics. However, the performance design, modulation, and stabilized preparation of SiBNC ceramics are restricted due to the amorphous microstructure. The first principles and molecular dynamics methods are used to investigate the correlation between physical properties and microstructures of SiBNC ceramics, and obtain the corresponding results. This review represents recent development on the materials computation of SiBNC ceramics.

基金项目:
国家自然科学基金(51703025)资助。
作者简介:
参考文献:

 [1] WANG Z C, ALDINGER F, RIEDEL R. Novel silicon–boron–carbon–nitrogen materials thermally stable up to      2 200 ℃[J]. J Am Ceram Soc, 2001, 84(10): 2179–2183.

[2] LIU Y, PENG S, CUI Y J, et al. Fabrication and properties of precursor–derived SiBN ternary ceramic fibers[J]. Mater Des, 2017, 128: 150–156.
[3] JI X Y, WANG S S, SHAO C W, et al. High–temperature corrosion behavior of SiBNC fibers for aerospace applications[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19712–19720.
[4] ZHANG C Y, LIU Y, CUI Y J, et al. Synthesis and characterization of a novel preceramic polymer for SiBNC ceramic fibers[J], Fiber Polym, 2018, 19: 956–964.
[5] Bill J, Kamphowe TW, Müller A, et al. Precursor-derived Si–(B–)C–N ceramics: thermolysis, amorphous state and crystallization[J]. Appl Organomet Chem. 2001, 15(10): 777–793.
[6] ZHANG C Y, LIU Y, CUI Y J, et al. Comparison of effects of nitrogen sources on the structures and properties of SiBNC ceramic fiber precursors[J]. Ceram Int, 2018, 44(12): 14878–14883.
[7] JANSEN M, JASCHKE B, JASCHKE T. Amorphous multinary ceramics in the Si–B–N–C system[J]. Struct Bond, 2002, 101: 137-191.
[8] GE K K, YE L, Han W J, et al. Pyrolysis of polyborosilazane and its conversion into SiBN ceramic[J]. Adv Appl Ceram, 2014, 113(6): 367–371.
[9] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.
[10] BUTCHEREIT E, NICKEL K G. Precursor-derived Si–B–C–N ceramics: oxidation kinetics[J]. Ultra-High Temp Ceram, 2001, 84(10): 2184–2188.
[11] HANNEMANN A, SCHÖN J C, JANSEN M, et al. Modeling amorphous Si3B3N7: structure and elastic properties[J]. Phys Rev B, 2004, 70(14): 1–13.
[12] MERA G, TAMAYO A, NGUYEN H, et al. Nanodomain structure of carbon-rich silicon carbonitride polymer-derived ceramics[J]. J Am Ceram Soc, 2010, 93(4): 1169–1175.
[13] MERA G, RIEDEL R, POLI F, et al. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides)[J]. J Eur Ceram Soc, 2009, 29(13): 2873–2883.
[14] IWAMOTO Y, VÖLGER W, KROKE E, et al. Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors[J]. J Am Ceram Soc, 2001, 84(10): 2170–2178.
[15] WÜLLEN L, JANSEN M. The role of carbon in the nitridic high performance ceramics in the system Si–B–N–C[J]. Solid State Nucl Mag, 2005, 27(1-2): 90–98.
[16] JÄSCHKE T, JANSEN M. Synthesis and characterization of new amorphous Si/B/N/C ceramics with increased carbon content through single-source precursors[J]. C R Chim, 2004, 7(5): 471–482.
[17] JASCHKE T, JANSEN M. Improved durability of Si/B/N/C random inorganic networks[J]. J Eur Ceram Soc, 2005, 25(2): 211–220. 
[18] GERVAIS C, BABONNEAU F, RUWISCH L, et al. Solid-state NMR investigations of the polymer route to SiBNC ceramics[J]. Can J Chem, 2003, 81(11): 1359–1369.
[19] ZEM A, MAYER J, JANAKIRAMAN N, et al. Quantitative EFTEM study of precursor-derived Si–B–C–N ceramics[J]. J Eur Ceram Soc, 2002, 22(9-10): 1621–1629.
[20] RAVI KUMAR N V, PRINZ S, CAI Y, et al. Crystallization and creep behavior of Si–B–C–N ceramics[J]. Acta Mater, 2005, 53(17): 4567–4578.
[21] GAO Y, MERA G, NGUYEN H, et al. Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBNC polymer-derived ceramics. Part I: Low temperature thermal transformation[J]. J Eur Ceram Soc, 2012, 32(9): 1857–1866.
[22] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351.
WANG Weihua. Prog Phys(in Chinese), 2013, 33(5): 177–351.
[23] 熊家炯. 材料设计[M]. 天津:天津大学出版, 2000: 1–32.
[24] DR M,GEK U. Density functional theory[M]. Berlin: Springer–Vertag, 1990.
[25] HOU T J, ZHU L L, XU X J. Adsorption and diffusion of benzene in ITQ–1 type zeolite: grand canonical monte carlo and molecular dynamics simulation study[J]. J Phys Chem B, 2000, 104(39): 9356–9364.
[26] HOU T J, ZHANG W, XU X J. Binding affinities for a series of selective inhibitors of gelatinase–a using molecular dynamics with a linear interaction energy approach[J]. J Phys Chem B, 2001, 105(22): 5304–5315.  
[27] LIU Y, CHEN K Z, DONG F B, et al. Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers[J]. Ceram Int, 2018, 44(9): 10199–10203.
[28] SCHÖN J C, HANNEMANNA A, SETHIB G, et al. Modelling structure and properties of amorphous silicon boron nitride ceramics[J]. Processing and Application of Ceramics, 2011, 5(2): 49–61.
[29] JANSEN M, SCHÖN J C, VAN W L. The Route to the structure determination of amorphous solids: a case study of the ceramic Si3B3N7[J]. Angew Chem Int Ed, 2006, 45(26): 4244–63.
[30] HANNEMANNA A, SCHÖN J C, JANSEN M. Nonequilibrium dynamics in amorphous Si3B3N7[J]. J Phys Chem B, 2005, 109: 1177–11776.
[31] SONG W Y, QUAN W W, ZHOU Y, et al. Effect of thermal initiator concentration on piezoresistivity of polymer-derived amorphous silicon carbonitrides[J]. Acta Phys Sin, 2008, 57(10): 6540–6544.
[32] KROLL P, HOFFMANN R. Silion boron nitrides: hypothetical polymophs of Si3B3N7[J]. Angew Chem Int Edit, 1998, 37(18): 2527–2530.
[33] 陆爱江. 高温隐形材料SiBN陶瓷[J]. 物理学报, 2013, 62(21): 1–5.
LU Aijiang. Acta Phys Sin(in Chinese), 2013, 62(21): 1–5.
[34] MATSUNGA K, IWAMOTO Y. Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron[J]. J Am Ceram Soc, 2001, 84(10): 2213–2219.
[35] GRIEBEL M, HAMAEKERS J. Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si–B–N[J]. Comput Mater Sci, 2007, 39(3): 502–517.
[36] AL–GHALITH J, DASMAHAPATRA A, KROLL P, et al. Compositional and structural atomistic study of amorphous Si–B–N networks of interest for high-performance coatings[J]. J Phys Chem C, 2016, 120(42): 24346–24353.
[37] KIM Y W, KIM S H, SONG I H, et al. Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction[J]. J Am Ceram Soc, 2005, 88(10): 2949–2951.
[38] BHARADWAJ L, FAN Y, ZHANG L, et al. Oxidation behavior of a fully dense polymer-derived amorphous silicon carbonitride ceramic[J]. J Am Ceram Soc, 2004, 87(3): 483–486.
[39] AN L, RIEDEL R, KONETSCHNY C, et al. Newtonian viscosity of amorphous silicon carbonitride at high temperature[J]. J Am Ceram Soc, 1998, 81(5): 1349–1352.
[40] ZIMMERMANN A, BAUER A, CHRIST M, et al. High-temperature deformation of amorphous Si–C–N and Si–B–C–N ceramics derived from polymers[J]. Acta Mater, 2002, 50: 1187–1196.
[41] LIU Y, FENG Y R, GONG H Y, et al. Electromagnetic wave absorption properties of nickel-containing polymer derived SiCN ceramics[J]. Ceram Int, 2018, 44(9): 10945–10950.
[42] SHAH S R, RAJ R. Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process[J]. Acta Mater, 2002, 50: 4093–4103.
[43] GOLCZWSKI J A. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors[J]. Int J Mater Res, 2006, 97(6): 729–736.
[44] GREGORI G, KLEEBE H J, BREQUEL H, et al. Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1 400 ℃[J]. J Non-Cryst Solids, 2005, 351(16–17): 1393–1402.
[45] RIEDEL R, GREINER A, MIEHE G, et al. The first crystalline solids in the ternary Si–C–N system[J]. Angew Chem Int Ed Engl, 1997, 36(6): 603–606.
[46] WANG H, LI Q, WANG H, et al. Design of superhard ternary compounds under high pressure: SiC2N4 and Si2CN4[J]. J Phys Chem C, 2010, 114(18): 8609–8613.
[47] CHEN L C, CHEN K H, WEI S L, et al. Crystalline SiCN: a hard material rivals to cubic BN[J]. Thin Solid Films, 1999, 355: 112–116.
[48] SJÖSTRÖM H, HULTMAN L, SUNDGREN J E, et al. Structural and mechanical properties of carbon nitride CNx (0.2≤x≤0.35) films[J]. J Vac Sci Technol A, 1996, 14(1): 56–62.
[49] KAWAMURA T. Silicon carbide crystals grown in nitrogen atmosphere[J]. Mineral J, 1965, (4): 333–355.
[50] KROLL P, RIEDEL R, HOFFMANN R. Silylated carbodiimides in molecular and extended structures[J]. Phys Rev B, 1999, 60(5): 3126–3139.
[51] WANG C Z, WANG E G, DAI Q. First principles calculations of structural properties of β-Si3–nCnN4 (n=0, 1, 2, 3)[J]. J Appl Phys, 1998, 83(4): 1975–1978.
[52] BETRANHANDY E, CAPOU L, MATAR S F, et al. First principles search of hard materials within the Si–C–N ternary system[J]. Solid State Sci, 2004, 6(4): 315–323.
[53] 宋久旭, 杨银堂, 柴常春, 等. 掺氮3C–SiC电子结构的第一性原理研究[J]. 西安电子科技大学学报, 2008, 35(1): 87–91.
SONG Jiuxu, YANG Yintang, CHAI Changchun, et al. Xi'an Dianzi Keji Daxue Xuebao(in Chinese), 2008, 35(1): 87–91.
[54] WILFERT J, VON HAGEN R, FIZ R, et al. Electrospinning of preceramic polymers for the preparation of SiBNC felts and their modification with semiconductor nanowires[J]. J Mater Chem, 2012, 22(5): 2099–2104.
[55] ZHANG C Y, HAN K Q, LIU Y, et al. A novel high yield polyborosilazane precursor for SiBNC ceramic fibers[J]. Ceram Int, 2017, 43(13): 10576–10580.
[56] BALDUS P, JANSEN M, SPORN D. Ceramic fibers for matrix composites in high-temperature engine applications[J]. Science, 1999, 285(5428): 699–703.
[57] MÜLLER U, WEINMANN M, JANSEN M. Cl2MeSi–NH–BCl2 and ClMe2Si–NH–BCl2: novel processable single source precursors of amorphous Si/C/B/N ceramics[J]. J Mater Chem, 2008, 18(31): 3671–3679.
[58] HERMANN A M, WANG Y T, RAMAKRISHNAN P A, et al. Structure and electronic transport properties of Si–(B)–C–N ceramics[J]. J Am Ceram Soc, 2001, 84(10): 2260–2264.
[59] MOU S W, LIU Y, HAn K Q, et al. Synthesis and characterization of amorphous SiBNC ceramic fibers[J]. Ceram Int, 2015, 41(9): 11550–11554.
[60] RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2 000 ℃[J]. Nature, 1996, 382(6594): 796–798.
[61] BALDUS H, JANSEN M, WAGNER O. New materials in the system Si–(N,C)–B and their characterization[J]. Key Eng Mater, 1994, 89-91: 75–80.
[62] HOUSKA J, BILEK M M M, WARSCHKOW O, et al. Ab initio simulations of nitrogen evolution in quenched CNx and SiBNC amorphous materials[J]. Phys Rev B, 2005, 72(5): 1–6.
[63] MATSUNAGA K, IWAMOTO Y, IKUHARA Y. Atomic structure and diffusion in amorphous Si–B–C–N by molecular dynamics simulation[J]. Mater Trans, 2002, 43(7): 1506–1511.
[64] HAGENMAYER R M, MÜLLER U, BENMORE C J, et al. Structural studies on amorphous silicon boron nitride Si3B3N7: neutron contrast technique on nitrogen and high energy X-ray diffraction[J]. J Mater Chem, 1999, 9(11): 2865–2870.
[65] GRIGORIEW H, LECIEJEWICE J. X-ray and electron microscopy study of amorphous boron nitride films[J]. Thin Solid Fims, 1989, 172(2): L75-L79.
[66] HOUŠKA J, CAPEK J, VLCEK J, et al. Bonding statistics and electronic structure of novel Si–B–C–N materials: ab initio calculations and experimental verification[J]. J Vac Sci Technol A, 2007, 25(5): 1411–1416.
[67] LIAO N, XUE W, ZHOU H, et al. Numerical investigation into the nanostructure and mechanical properties of amorphous SiBNC ceramics[J]. RSC Adv, 2013, 3(34): 14458–14465.
[68] VLCEKl J, POTOCKY S, CIZEK J, et al. Reactive magnetron sputtering of hard Si–B–C–N films with a high-temperature oxidation resistance[J]. J Vac Sci Technol A, 2005, 23(6): 1513–1522.
[69] DAVIS C A. A simple model for the formation of compressive stress in thin films by ion bombardment[J]. Thin Solid Films, 1993, 226(1): 30–34.
[70] ULRICH S, THEEL T, SCHWAN J, et al. Magnetron–sputtered superhard materials[J]. Surf Coat Technol, 1997, 97(1–3): 45–59.
[71] HOUŠKA J, WARSCHKOW O, BILEK M M, et al. The effect of argon on the structure of amorphous SiBNC materials: an experimental and ab initio study[J]. J Phys: Condens Matter, 2006, 18(7): 2337–2348.
[72] DASMAHAPATRA A, MELETIS E, KROLL P. First principles modeling and simulation of Zr–Si–B–C–N ceramics: developing hard and oxidation resistant coatings[J]. Acta Mater, 2017, 125: 246–254.
[73] HOUSKA J, MARES P, SIMOVA V, et al. Dependence of characteristics of MSiBNC (M=Ti, Zr, Hf) on the choice of metal element: experimental and ab–initio study[J]. Thin Solid Films, 2016, 616: 359–365.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com