首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
ZrO2陶瓷的微波烧结制备及其性能
作者: 帆1  鑫1  良1  芳1 骈小璇2  锐2 3 
单位:(1. 河南信息统计职业学院 郑州 450008 2. 郑州大学材料科学与工程学院 郑州 450001 3. 郑州航空工业管理学院 航空材料与工程技术河南省重点实验室 郑州 450045) 
关键词:微波烧结 致密化行为 烧结助剂含量 氧化锆陶瓷 
分类号:TB321
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 以微波热解制备的氧化锆粉体为原料、氧化钇为烧结助剂,采用微波烧结方式制备氧化锆陶瓷,研究了不同氧化钇含量对氧化锆陶瓷的微波烧结行为、物相组成、显微结构及致密化的影响。结果表明:在微波烧结过程中,随着Y2O3含量的增加,ZrO2陶瓷的物相从m-ZrO2逐渐转变为m-ZrO2与t-ZrO2 (c-ZrO2)并存,且ZrO2陶瓷的晶粒随着烧结助剂含量的增加而逐渐变小,样品致密度下降。当烧结温度为1 450 ℃时,微波烧结获得的未添加烧结助剂的样品致密度达到99%,远远高于传统电阻烧结所获得样品的致密度。

 ZrO2 ceramics were prepared via hybrid microwave sintering with Y2O3 as sintering additives. The microwave sintering behavior, densification process, phase transformation and microstructure of ZrO2 ceramics were investigated. In the microwave sintering process, the phase composition transforms form pure m-ZrO2 to coexisted m-ZrO2 and t-ZrO2 (c-ZrO2), and the crystal size and density of ZrO2 ceramics decrease when the Y2O3 content increases. The density of ZrO2 samples sintered at 1 450 ℃ without any sintering additives is 99%, which is greater than that sintered by a conventional method.

 
基金项目:
国家自然科学基金面上项目(51672254)。
作者简介:
参考文献:

 [1] SPONCHIA G, MOSHTAGHIOUN B M, RIELLO P, et al. High-temperature compressive creep of novel fine-grained orthorhombic ZrO2 ceramics stabilized with 12 mol% Ta doping[J]. J Eur Ceram Soc, 2018, 38(5): 2445–2448.

[2] HE K, CHEN J J, WENG W X, et al. Micro structure and mechanical properties of plasma sprayed Al2O3–YSZ composite coatings[J]. Vacuum, 2018, 151: 209–220.
[3] XIE H, LU J L, SHEKHAR M, et al. Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water–gas-shift reaction[J]. Acs Catal, 2015, 3(1): 61–73.
[4] WANG Q, ZHANG M Z, SUN L N, et al. Application of tetragonal nano-zirconia in ceramic teeth[J]. Appl Mech Mater, 2012, (217-219): 235–238.
[5] VIAZZI C, BONINO J P, ANSART F, et al. Structural study of metastable tetragonal YSZ powders produced via a sol–gel route[J]. J Alloys Compd, 2008, 452(2): 377–383.
[6] SCOTT H G. Phase relationships in the zirconia–yttria system[J]. J Mater Sci, 1975, 10(9): 1527–1535.
[7] MONTE R D, KASPAR J. Nanostructured CeO2–ZrO2 mixed oxides[J]. J Mater. Chem, 2005, 36(26): 633–648.
[8] DONZEL L, SCHALLER R. High temperature mechanical spectroscopy of CaO–ZrO2 cubic single crystals[J]. Acta Mater, 1998, 46(14): 5187–5193.
[9] HARTMANOVA M, HANIC F, KOSOVA K, et al. Microstructure and some physical characteristics of MgO–PSZ as a function of stabilizer concentration[J]. Phys Stat Sol (a), 1993, 136: 67–71.
[10] BARAD C, KIMMEL G, HAYUN H, et al. Influence of galia (Ga2O3) addition on the phase transformations and crystal growth behavior of zirconia (ZrO2)[J]. J Mater Sci, 2018, 53(18): 12741–12749.
[11] PIAN X X, FAN B B, CHEN H, et al. Preparation of m-ZrO2 compacts by microwave sintering[J]. Ceram Int, 2014, 40(7): 10483–10488.
[12] CHEN Y Q, FAN B B, SHAO G, et al. Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering[J]. J Adv Ceram, 2016, 5(4): 291–297.
[13] PIAN X X, SHAO G, FAN B B, et al. Rapid densification of SiC ceramic rollers by microwave sintering[J]. Adv Appl Ceram, 2015, 114(1): 28–32.
[14] FAN B B, LI W, DAI B Z, et al. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering[J]. Process Appl Ceram, 2016, 10(4): 243–248.
[15] RAMESH S, ZULKIFLI N, TAN C Y, et al. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia[J]. Ceram Int, 2018, 44(8): 8922–8927.
[16] CHARMOND S, CARRY C P, BOUVARD D. Densification and microstructure evolution of Y-tetragonal zirconia polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity[J]. J Eur Ceram Soc, 2010, 30(6): 1211–1221.
[17] MANIERE C, ZAHRAH T, OLEVSKY E A. Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO2[J]. Scripta Mater, 2017, 128: 49–52.
[18] INGEL R P, LEWIS III D. lattice parameters and density for Y2O3-stabilized ZrO2[J]. J Am Ceram Soc, 1986, 69(4): 325–332.
[19] 骈小璇. 微波烧结Y-ZrO2陶瓷烧结工艺及机理研究[D]. 郑州: 郑州大学, 2014.
PIAN Xiaoxuan. Study of the processing and mechanisms of microwave sintering of Y-ZrO2 ceramics (in Chinese, dissertation). Zhengzhou: Zhengzhou University, 2014.
[20] JANNEY M A, CALHOUN C L, KIMREY H D. Microwave sintering of solid oxide fuel cell materials: i, zirconia–8 mol% yttria[J]. J Am Ceram Soc, 1992, 75(2): 341–346.
[21] XIE Z P, LI J B, HUANG Y, et al. Microwave sintering behaviour of ZrO2–Y2O3 with agglomerate[J]. J Mater Sci Lett, 1996, 15(13): 1158–1160.
[22] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. J Alloys Compd, 2010, 41(21): 175–189.
[23] MATSUI K, YOSHIDA H, IKUHARA Y. Grain-boundary structure and microstructure development mechanism in 2–8mol% yttria-stabilized zirconia polycrystals[J]. Acta Mater, 2008, 56(6): 1315–1325.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com