首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
皮芯结构碳化硅陶瓷纤维的制备及性能
作者:徐兆芳 陈元兰 李晓鸿 廖洪敏 周尝尝   
单位:(贵州师范大学材料与建筑工程学院 贵阳550025) 
关键词:脉冲热氧化 聚碳硅烷 碳化硅陶瓷纤维 皮芯结构 
分类号:TQ343
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用空气与真空气氛脉冲的方法对聚碳硅烷(PCS)纤维进行气氛脉冲热氧化处理,然后在惰性气氛中热解制备出具有皮芯结构的碳化硅陶瓷(SiC)纤维,研究了脉冲次数对PCS纤维热氧化质量增加率、化学结构、Si–H键反应程度、氧元素分布及烧成SiC纤维晶体结构与力学性能的影响。结果表明:气氛脉冲处理可实现PCS的热氧化不熔化,且热氧化反应主要发生在PCS纤维的外表层,外表层形成了大量的Si–OH、Si–O–Si和C=O含氧结构,氧在PCS纤维径向上呈现梯度分布特性,表层富氧芯部低氧,脉冲热氧化使得PCS纤维凝胶出现时对应的热氧化质量增长和Si–H键反应程度都较低,分别为7.03%和25.37%;烧成得到的SiC陶瓷纤维仍保持了同样的氧梯度分布特性,且具有β-SiC晶体结构,是一种典型的皮芯结构,抗拉强度可达(1.74±0.21) GPa。

 Polycarbosilane (PCS) fibers were heat treated via atmosphere pulse in pulsing air and vacuum atmosphere. The skin–core structure silicon carbide (SiC) ceramic fibers were prepared via the pyrolysis of PCS fibers in inert atmosphere. The effect of pulse oxidation time on the weight gain, chemical structure, Si—H reaction degree, oxygen element distribution of the PCS fibers, crystal structure and mechanical properties of the SiC fibers was investigated. The results show that the PCS fibers are thermal oxidation curing in atmosphere pulse treatment. The thermal oxidation reaction mainly occurs on the outside-surface of the PCS fibers, forming the oxygen-containing structures such as Si—OH, Si—O—Si and C=O. The oxygen element presents a gradient distribution characteristic. The surface is rich in oxygen and the core has a lower oxygen content. When the gel appears, the PCS fibers have a lower thermal oxidation mass fraction and Si—H reaction degree due to pulse thermal oxidation, i.e., 7.03% and 25.37%. The sintered SiC fibers have the same oxygen element distribution in the cross-section and with β-SiC crystal structure. The SiC ceramic fibers obtained by this method are a skin–core structure, having a preferable tensile strength of (1.74±0.21) GPa.

基金项目:
贵州师范大学研究生创新基金(YC[2017]031);国家自然科学基金(51462004)和大学生创新创业训练计划(201710663060)资助。
作者简介:
参考文献:

 [1] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261(5562): 683–685.

[2] KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects[J]. J Nucl Mater, 2014, 448(1–3): 448–476.
[3] KATOH Y, SNEAD L, CHENG T, et al. Radiation–tolerant joining technologies for silicon carbide ceramics and composites[J]. J Nucl Mater, 2014, 448(1–3): 497–511.
[4] SHIN D G, CHO K Y, JIN E J, et al. Processes and applications of silicon carbide nanocomposite fibers[C]// 9th International Conference on Compressors and their Systems, London, UK, 2015: 1–5.
[5] YAJIMA S, HASEGAWA Y, OKAMURA K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor[J]. Nature, 1978, 273(5663): 525–527.
[6] ZHANG J W, FANG H, HAO L Y, et al. Preparation of silicon nitride hollow fibre membrane for desalination[J]. Mater Lett, 2012, 68(1): 457–459.
[7] 黎阳, 许云书. 圆环形截面碳化硅纤维管的辐射化学法合成[J]. 辐射研究与辐射工艺学报, 2010, 28(1): 15–19.
LI Yang, XU Yunshu. J Radiat Res Radiat Process (in Chinese), 2010, 28(1): 15–19.
[8] LI W H, WANG J, XIE Z F, et al. Preparation of hollow Si–B–N ceramic fibers by partial curing and pyrolysis of polyborosilazane fibers[J]. Mater Lett, 2012, 78(7): 1–3.
[9] SU Z M, ZHANG L T, LI Y C, et al. Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere[J]. J Am Ceram Soc, 2015, 98(7): 2014–2017.
[10] 黎阳, 徐兆芳, 陈元兰, 等. 一种皮芯结构碳化硅陶瓷纤维的制备方法[P]. CN Patent, 108218435A. 2018–06–29.
LI Yang, XU Zhaofang, CHEN Yuanlan, et al. Method for preparing skin–core structure silicon carbide ceramic fibers (in Chinese). CN Patent, 108218435A. 2018–06–29.
[11] LY H Q, TAYLOR R, DAY R J, et al. Conversion of polycarbosilane (PCS) to SiC–based ceramic. Part I. characterisation of PCS and curing products[J]. J Mater Sci, 2001, 36(16): 4037–4043.
[12] HONG J, CHO K Y, SHIN D G, et al. Structural evolution of silicon carbide phase from the polycarbosilane cured with iodine: NMR Study[J]. J Inorg Organomet Polym Mater, 2018: 28(6): 2221–2230.
[13] ZHOU B F, FENG K Q, ZHOU H L. Study on crosslinking of polymers and joining mechanism of SiC ceramic[J]. Adv Appl Ceram, 2018, 117(6): 1–8.
[14] 黎阳, 许云书. 凝胶点前聚碳硅烷先驱丝的不熔化机理研究[J]. 辐射研究与辐射工艺学报, 2008, 26(3): 146–150.
LI Yang, XU Yunshu. J Radiat Res Radiat Process (in Chinese), 2008, 26(3): 146–150.
[15] 程祥珍, 宋永才, 谢征芳, 等. 聚碳硅烷纤维的不熔化工艺研究[J]. 硅酸盐学报, 2004, 32(11): 1352–1360.
CHENG Xiangzhen, SONG Yongcai, XIE Zhengfang, et al. J Chin Ceram Soc, 2004, 32(11): 1352–1360.
[16] 朱冰. 低预氧化聚碳硅烷纤维热交联技术的研究[D]. 长沙: 国防科学技术大学, 2002. 
ZHU Bing. Study on thermal crosslinking of low curing degree PCS fiber (in Chinese, dissertation). Changsha: National University of Defense Technology, 2002.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com