首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于第一性原理的S掺杂BiFeO3结构模拟和光吸收性能预测
作者:魏丽静1 2 郭建新2 刘保亭2 
单位:(1. 华北电力大学科技学院 保定 071051 2. 河北大学物理科学与技术学院 保定 071002) 
关键词:掺杂铁酸铋 光学性质 第一性原理 
分类号:TB484.5
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用基于密度泛函理论的第一性原理对S掺杂的四方铁酸铋(BiFeO3)结构进行了模拟计算,并对其光吸收性能进行了预测。通过计算S替代O的形成能,获得了S的最可能替代位置和S掺杂BiFeO3最稳定结构。研究发现,S取代O会造成BiFeO3晶格沿c轴拉伸,体积膨胀。当S取代全部D1位置的O后,形成BiFeO2S的c/a达到1.468,晶胞体积扩大近24%。电子结构分析表明,BiFeO3掺入少量的S(BiFeO2.875S0.125)会使带隙减小,由原来未掺杂的1.53 eV降低到1.35 eV。BiFeO2S相比BiFeO2.875S0.125,虽然带隙宽度变化比较小,但导带底能带色散变小,这种变化对光的吸收有明显作用。由态密度分析可知,BiFeO2S的导带最低点主要由Bi 6pz 和Fe  轨道构成,而Bi 6s轨道、O 2pz轨道和S 2(px, py)轨道共同构成了价带顶。通过光学吸收系数的计算进一步表明,S的掺入改善了BiFeO3的可见光吸收性能。

 The structure and optical adsorption property of the tetragonal S-doped BiFeO3 were investigated by the first-principles based on the density functional theory. The most possible site of S replacing O in BiFeO3 and the most stable structure could be obtained based on the calculations of formation energies. The results show that the lattice parameter c and the unit cell volume increase when S atom replaces O atom of BiFeO3. For BiFeO2S, the rate of c/a is 1.468. The volume of BiFeO2S is 1.24 times greater than that of BiFeO3. In addition, the bandgap decreases from 1.53 eV to 1.35 eV for BiFeO2.875S0.125. The bandgap of BiFeO2S almost unchanges when the doped S content increases, compared to BiFeO2.875S0.125. However, the band dispersion of conduction band bottom is aligned, which is benefit to the absorption of visible light. According to the analysis for the state density, the conduction band minimum and the valence band maximum are mainly due to the Bi 6pz orbitals and Fe  , and Bi 6s orbitals, O 2pz orbitals and S 2(px, py) orbitals, respectively. Furthermore, the calculations of the absorption coefficients indicate that the substitution of S atom improves the visible light absorption property of BiFeO3.

基金项目:
国家自然科学基金(11374086);河北省自然科学基金(20172010034);中央高校基本科研业务费专项资金资助(2016MS158)。
作者简介:
参考文献:

 [1] ZAHEDI A. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems[J]. Renew Energ, 2006, 31(5): 711–718.

[2] WRONSKI C R, CARLSON D E. Amorphous silicon solar cells [J]. Appl Phys Lett, 1976, 28(11): 671–673.
[3] MCDONALD S A, KONSTANTATOS G, ZHANG S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat Mater, 2005, 4(2): 138.
[4] PANTHANI M G, AKHAVAN V, GOODFELLOW B, et al. Synthesis of CulnS2, CulnSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics[J]. J Am Chem Soc, 2008, 130(49): 16770–16777.
[5] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643–647.
[6] BRITT J, FEREKIDES C. Thin-film CdS/CdTe solar cell with 15.8% efficiency[J]. Appl Phys Lett, 1993, 62(22): 2851–2852.
[7] VON BALTZ R. Theory of the anomalous bulk photovoltaic effect in ferroelectrics[J]. Phys Status Solidi B, 1978, 89(2): 419–429.
[8] GLASS A, Linde D V D. Negran T. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3[M]// Pochi Y, Claire G ed. Papers On Photorefractive Nonlinear Optics. Singapore: World Scientific, 1995: 371–373.
[9] GREEN M A. Solar cells: Operating Principles, Technology, and System Applications[M]. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1982: 288.
[10] KANG B, RHEE B K, JOO G T, et al. Measurements of photovoltaic constant and photoconductivity in Ce, Mn: LiNbO3 crystal[J]. Opt Commun, 2006, 266(1): 203–206.
[11] FRIDKIN V M, POPOV B. Anomalous photovoltaic effect in ferroelectrics[J]. Phys Usp, 1978, 21(12): 981.
[12] ICHIKI M, MAEDA R, MORIKAWA Y, et al. Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design[J]. Appl Phys Lett, 2004, 84(3) 395–397.
[13] CHOI T, LEE S, CHOI Y, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3[J]. Science, 2009, 324(5923): 63–66.
[14] 彭增伟, 刘保亭. 上电极对镧镍共掺铁酸铋薄膜电学性质的影响[J]. 硅酸盐学报, 2018, 46(7): 972–977.
PENG Zengwei, LIU Baoting. J Chin Ceram Soc, 2018, 46(7): 972–977.
[15] 朱慧, 张迎俏, 汪鹏飞, 等. 铁酸铋薄膜的阻变效应和导电机制[J].硅酸盐学报, 2017, 45(4): 467–471.
ZHU Hui, ZHANG Yingqiao, WANG Pengfei, et al. J Chin Ceram Soc, 2017, 45(4): 467–471.
[16] WANG F, GRINBERG I, RAPPE A M. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics[J]. Appl Phys Lett, 2014, 104(15): 152903.
[17] NECHACHE R, HARNAGEA C, LI S, et al. Bandgap tuning of multiferroic oxide solar cells[J]. Nat Photonics, 2015, 9(1): 61.
[18] HU Y C, JIANG Z Z, GAO K G, et al. Fluorine doping effects on the magnetic and electric properties of BiFeO3[J]. Chem Phys Lett, 2012, 534: 62–66.
[19] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane–wave basis set[J]. Phys Rev B, 1996, 54(16): 11169.
[20] BLÖCHL P E, JEPSEN O, ANDERSEN O K. Improved tetrahedron method for Brillouin-zone integrations[J]. Phys Rev B, 1994, 49(23): 16223.
[21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.
[22] DUDAREV S, BOTTON G, SAVRASOV S, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys Rev B, 1998, 57(3): 1505.
[23] NEATON J, EDERER C, WAGHMARE U, et al. First-principles study of spontaneous polarization in multiferroic BiFeO3[J]. Phys Rev B, 2005, 71(1): 014113.
[24] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188.
[25] CHEN P, PODRAZA N, XU X, et al. Optical properties of quasi-tetragonal BiFeO3 thin films[J]. Appl Phys Lett, 2010, 96(13): 131907.
[26] QIAO L, ZHANG S, XIAO H, et al. Orbital controlled band gap engineering of tetragonal BiFeO3 for optoelectronic applications[J]. J Mater Chem C, 2018, 6(5): 1239–1247.
[27] RICINSCHI D, YUN K Y, OKUYAMA M. A mechanism for the 150 µC/cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data[J]. J Phys-Conden Mat, 2006, 18(6): L97.
[28] BREHM J A, TAKENAKA H, LEE C W, et al. Density functional theory study of hypothetical PbTiO3-based oxysulfides[J]. Phys Rev B, 2014, 89(19): 195202.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com