首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水蒸气腐蚀对铝硅合金粉表面形貌的影响
作者:韩藏娟1 顾华志1 张美杰1 郭承忠2 
单位:(1. 武汉科技大学耐火材料与冶金国家重点实验室 武汉 430080 2. 武汉钢铁有限公司采购中心 武汉 430081) 
关键词:表面腐蚀 铝硅合金 氢氧化铝晶型 扩散 
分类号:TQ175.4; TG172.3
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 采用水蒸气腐蚀的方法,研究了影响表面Al(OH)3晶型结构的主要因素。将Al–Si合金粉置于具有一定压力的水蒸气中,利用水蒸气与合金中Al的反应,在合金粉表面原位生成Al(OH)3晶体。结果表明:Al–Si合金粉粒径影响表面生成的Al(OH)3晶型结构和形貌,平均粒径为38 µm的Al–Si合金粉,被腐蚀后生成的Al(OH)3以针状晶为主,而平均粒径为74 µm的Al–Si合金粉,被腐蚀后生成的Al(OH)3以柱状晶为主;压力大小及在水蒸气中的保持时间对Al(OH)3的晶体尺寸也有影响。柱状晶和针状晶的生长皆由水蒸气分子在晶体内纳米孔中扩散至Al–Si合金粉表面与Al反应造成。

 The main factors affecting the structure and morphology of Al(OH)3 crystals were investigated by a water-vapor corrosion method. Al–Si alloy particles were placed in water vapor at a certain pressure. Al(OH)3 crystals were in-situ formed on the surface of Al–Si alloy particles via the reaction of water vapor with Al in the alloy. The results show that the structure and morphology of Al(OH)3 crystals can change with the average size of Al–Si alloy particles. The morphology of Al(OH)3 crystals formed after corrosion mainly is needle-like when the average size of alloy particles is 38 µm, and the morphology of Al(OH)3 crystals formed after corrosion is column-like when the average size is 74 µm. The pressure of water vapor and dwell time in water vapor also affect the size of Al(OH)3 crystals. The growth of column-like and needle-like Al(OH)3 crystals occurs due to the diffusion of water vapor molecules into the nanopores of the crystals and the reaction of water vapor molecules with Al on the surface of Al–Si alloy particles.

基金项目:
国家自然科学基金项目联合基金重点项目(U1860205);国家外专局教科文卫高端外国专家项目(GDW20174200160)。
作者简介:
参考文献:

 [1] ZHANG J, KLASKY M, LETELLIER B C. The aluminum chemistry and corrosion in alkaline solutions[J]. J Nucl Mater, 2009, 384(2): 175–189.

[2] SAYYEDANA F S, ENAYATI M H, HASHEMPOUR M, et al. Synthesis and characterization of sol–gel derived non-stoichiometric aluminum phosphate coating[J]. Surf Coat Technol, 2018, 351: 128–135.
[3] JACEK G C, IRENA S, ANNA M, et al. Protective properties of SiO2 with SiO2 and Al2O3 nanoparticles sol–gel coatings deposited on FeCrAl alloys[J]. Int Ceram, https://doi.org/10.1016/j.ceramint.2018. 07.295.
[4] XIONG Y, ZHUANG W, ZHANG M. Effect of the thickness of cold sprayed aluminium alloy coating on the adhesive bond strength with an aluminium alloy substrate[J]. Surf Coat Technol, 2015, 270: 259–265.
[5] QIU X, TARIQ N U H, WANG J, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique[J]. Surf Coat Technol, 2018, 350(25): 391–400. 
[6] BY R, HART K. A study of boehmite formation on aluminium surfaces by electron diffraction[J]. Trans Faraday Soc, 1954, 50(50): 269–273.
[7] ALTENPOHL D G. Use of boehmite films for corrosion protection of aluminum[J]. Corrosion, 1962, 18: 143t–153t.
[8] ALWITT R S. The growth of hydrous oxide films on aluminum[J]. Corros Sci, 1974, 121(10): 1322–1328.
[9] PATIL P V, BENDALE D M, PURI R K. Refractive index and adhesion of Al2O3, thin films obtained from different processes—a comparative study[J]. Thin Solid Films, 1996, 288(1): 120–124.
[10] DIN R U, JELLESEN M S, AMBAT R. Role of acidic chemistries in steam treatment of aluminium alloys[J]. Corros Sci, 2015, 99: 258–271.
[11] DIN R U, JELLESEN M S, AMBAT R. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance[J]. Appl Surf Sci, 2015, 355: 716–725.
[12] DIN R U, BORDO K, TABRIZIAN N, et al. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance[J]. Appl Surf Sci, 2017, 423: 78–89.
[13] 李宁宁, 李孔斋, 魏永刚, 等. Al@AlN?A12O3高温复合相变蓄热材料的制备与性能研究[J]. 太阳能学报, 2016, 37(11): 2875–2882.
LI Ningning, LI Kongzhai, WEI Yonggang, et al. Acta Energlae Solaris Sinica (in Chinese), 2016, 37(11): 2875–2882.
[14] ZHANG L, LU W, YAN L, et al. Hydrothermal synthesis and characterization of core/shell AlOOH microspheres[J]. Micropor Mesopor Mater, 2009, 119(1): 208–216.
[15] 戴燕妮, 刘贡钢, 李雯, 等. Al–Si@Al2O3核壳结构载体的制备及其催化应用[J]. 有色金属科学与工程, 2016, 7(5): 42–48.
DAI Yanni, LIU Gonggang, LI Wen, et al. Nonferr Met Sci Eng (in Chinese), 2016, 7(5): 42–48.
[16] NOMURA T, SHENG N, ZHU C, et al. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high?temperature thermal energy storage and transportation[J]. Appl Energy, 2017, 188: 9–18.
[17] NOMURA T, ZHU C, SHENG N, et al. Microencapsulation of metal?based phase change material for high?temperature thermal energy storage[J]. Sci Rep, 2015, 5(1): 1–8.
[18] KOU H M, GUO J K, WANG J, et al. Al/Al2O3 core–shell particles synthesized by wet?chemical based route[J]. Key Eng Mater, 2006, 313: 63–68.
[19] HE F, SONG G, HE X, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al–Si/Al2O3, micro?particles during thermal cycling[J]. Ceram Int, 2015, 41(9): 10689–10696.
[20] HE F, SUI C, HE X, et al. Comparison of structure and phase change characteristic of microencapsulated core/shell Al–Si alloy microparticles synthesized by two methods[J]. J Sol–Gel Sci Technol, 2015, 76(1): 1–10.
[21] 谢壮德, 戴杰华, 王健农, 等. 气体雾化高硅铝合金粉末形貌特征及尺寸分布[J]. 特种铸造及有色合金, 2003, 1: 10–12.
XIE Dezhuang, DAI Jiehua, WANG Jiannong, et al. Spec-cast Non-ferr Alloy (in Chinese), 2003, 1: 10–12.
[22] 沈钧, 孙坚飞, 谢壮德, 等. 超声雾化法制备的Al–Si合金粉末表面的吸附和吸附特性[J]. 材料工程, 2002, 6: 43–45.
SHEN Jun, SUN Jianfei, XIE Zhuangde, et al. J Mater Eng (in Chinese), 2002, 6: 43–45.
[23] DIN R U, GUDLA V C, JELLESEN M S, et al. Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructure[J]. Surf Coat Technol, 2015, 276: 77–88.
[24] KAZANTSEV S O, LOZHKOMOEV A S, GLAZKOVA E A, et al. Preparation of aluminum hydroxide and oxide nanostructures with controllable morphology by wet oxidation of AlN/Al nanoparticles[J]. Mater Res Bull, 2018, 104: 97–103.
[25] 李友凤, 周继承, 廖立民, 等. 超重力碳分反应沉淀法制备分散性纳米氢氧化铝[J]. 硅酸盐学报, 2006, 34(10): 1290–1294.
LI Youfeng, ZHOU Jicheng, LIAO Limin, et al. J Chin Ceram Soc, 2006, 34(10): 1290–1294.
[26] 吴争平. 氢氧化铝结晶行为及其晶体微观叠合的理论研究[D]. 长沙: 中南大学, 2007.
WU Zhengping. Theoretical study on crystallization behavior and crystal superposition of aluminum hydroxide (in Chinese, dissertation). Changsha: Central South University, 2007.
[27] SHAYANFAR S, AGHAZADEH V, SARAVARI A, et al. Aluminum hydroxide crystallization from aluminate solution using carbon dioxide gas: Effect of temperature and time[J]. J Cryst Growth, 2018, 496/497: 1–9.
[28] ZHUK A Z, VLASKIN M S. Synthesis of high-purity aluminum oxide from hydrothermally produced boehmite by high temperature vacuum treatment[J]. Mater Today Proc, 2017 (4): 11580–11587.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com