首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
烧结法制备炭黑/铝酸钙水泥及其结合耐火浇注料的性能
作者:李盼盼1 肖国庆1 丁冬海1 2  柳1 杨守磊1 吕李华1 
单位:(1. 西安建筑科技大学材料与矿资学院 西安 710055 2. 西安建筑科技大学材料科学与工程博士后流动站 西安 710055) 
关键词:烧结法 铝酸钙 含碳浇注料 耐火材料 
分类号:TQ175
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 以氧化铝、氧化钙及炭黑为原料,聚乙烯吡咯烷酮(PVP)水溶液为分散剂,经球磨混合、干燥、压坯,通过埋碳烧结法制备炭黑/铝酸钙水泥(CCAC)。利用X射线衍射仪、扫描电子显微镜和能谱仪研究了PVP水溶液浓度对产物物相组成和显微结构的影响;并分别通过沉降实验和综合热分析研究了炭黑/铝酸钙水泥的水润湿性和抗氧化性。结果表明:5%(质量分数)PVP的添加可以使炭黑的Zeta电位从–22.4 mV下降到–34.4 mV,炭黑在水中的分散性明显改善;经1 400 ℃保温4 h烧结后,5% PVP试样炭黑分布最均匀,产物中CaO•Al2O3和CaO•2Al2O3的含量与商用Secar71水泥物相组成相近。与机械混合法制备的炭黑/铝酸钙水泥(S71CB)相比,埋碳烧结法制备的炭黑/铝酸钙水泥(CCAC–5,PVP水溶液浓度5%)具有较好的水分散性和抗氧化性。分别以S71CB和CCAC–5为结合剂制备刚玉质浇注料,研究了2种浇注料的力学性能和抗渣侵蚀性,结果表明:CCAC–5结合浇注料1 500 ℃烧结3 h后耐压强度和抗折强度分别比S71CB结合浇注料提高8.39%和10.71%,熔渣侵蚀率降低7%。CCAC–5结合浇注料表现出较好的力学和抗渣侵蚀性能,有望成为含碳浇注料的新型结合剂。

 Carbon black/calcium aluminate cement (CCAC) was prepared by ball-milling mixing, drying and carbon-bed sintering with Al2O3, CaO and carbon black as raw materials, polyvinylpyrrolidone (PVP) as a dispersant. The effect of PVP concentration in aqueous solution on the phase composition and microstructure of the products was investigated by X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. The wettability and oxidation resistance of carbon black/calcium aluminate cement were analyzed by sedimentation and thermogravimetry–differential scanning calorimetry, respectively. The results show that the dispersibility of carbon black in water can be improved at 5% (in mass fraction) PVP. The Zeta potential decreases from –22.4 mV to –34.4 mV. After sintering at 1 400 ℃ for 4 h, the distribution of carbon black in the sample with 5% PVP is uniform, the content of CaO•Al2O3 and CaO•2Al2O3(CA2) in the product is similar to that of commercial cement Secar71. It is indicated that the carbon black/calcium aluminate cement (CCAC–5, PVP concentration of 5%) prepared by carbon-bed sintering has better water dispersibility and oxidation resistance, compared to the carbon black/Secar71(S71CB) prepared by mechanical mixing. Furthermore, the mechanical properties and slag corrosion resistance of corundum-based castables bonded with CCAC and S71CB, respectively, were compared. The cold crushing strength and cold modulus of rupture values of the castables bonded with CCAC–5 after ?red at 1 500 ℃ for 3 h are increased by 8.39% and 10.71%, respectively, and the slag erosion rate is decreased by 7%, compared to the castables bonded with S71CB. CCAC–5 shows good mechanical and slag corrosion resistance, as a promising binder for carbon-containing castables. 

基金项目:
国家自然科学基金(51572212, 51502236, 51772236);陕西省重点研发项目(2018ZDXM-GY-128);中国博士后基金(2016M602940XB)资助。
作者简介:
参考文献:

 [1] 张巍. 不定形耐火材料之耐火浇注料的研究进展[J]. 材料导报, 2012, 26(8): 93–101.

ZHANG Wei. Mater Rev(in Chinese) , 2012, 26(8): 93–101.
[2] LEE W E, VIEIRA W, ZHANG S, et al. Castable refractory concretes[J]. Int Mater Rev, 2001, 46(3): 145–167.
[3] YANG D X, LIU Y G, FANG M H, et al. Study on the slag corrosion resistance of unfired Al2O3–SiC/β–Sialon/Ti(C,N)–C refractories[J]. Ceram Int, 2014, 40(1): 1593–1598.
[4] LI X, LI Y, CHEN L, et al. Matrix structure evolution and thermo-mechanical properties of carbon fiber-reinforced Al2O3–SiC–C castable composites[J]. Mater Res Bull, 2015, 61: 201–206.
[5] GOGTAS C, LOPEZ H F, SOBOLEV K. Role of cement content on the properties of self-flowing Al2O3 refractory castables[J]. J Eur Ceram Soc, 2014, 34(5): 1365–1373.
[6] LEE W E, MOORE R E. Evolution of in situ Refractories in the 20th Century[J]. J Am Ceram Soc, 1998, 29(36): 1385–1410.
[7] BRAULIOL M A L, MORBIOLI G G, BITTENCOURT L R M, et al. Novel features of nanoscaled particles addition to alumina–magnesia refractory castables[J]. J Am Ceram Soc, 2010, 93(9): 2606–2610.
[8] ZHANG S, LEE W E. Carbon containing castables: current status and future prospects[J]. British Ceram Transact, 2002, 101(1): 1–8.
[9] LEE W E, ZHANG S. Melt corrosion of oxide and oxide–carbon refractories[J]. Int Mater Rev, 1999, 44(3): 77–104.
[10] WEI G, ZHU B, LI X, et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheetmodified phenol resin[J]. Ceram Inter, 2015, 41(1): 1553–1566.
[11] HAMAZAKI Y, KANESHIGE T, SUMIMURA H, et al. The effect of spinel addition on Al2O3–SiC–C castables[J]. Shinagawa Tech Rep, 1998, 41: 15–24.
[12] 毕玉保, 王慧芳, 赵万国, 等. 含碳浇注料用鳞片石墨的表面改性技术综述[J]. 材料导报, 2017, 31(15): 108–114.
BI Yubao, WANG Huifang, ZHAO Wanguo, et al. Mater Rev(in Chinese), 2017, 31(15): 108–114.
[13] 朱伯铨, 管红梅, 刘文超. 以表面活性剂改善水对鳞片石墨的润湿性研究[J].武汉冶金科技大学学报: 自然科学版, 1999, 22(3): 242–244.
ZHU Boquan, GUAN Hongmei, LIU Wenchao. J Wuhan Yejin Univ Sci Tech: Nat Sci Ed(in Chinese), 1999, 22(3): 242–244.
[14] 宋林喜, 王林俊, 张积礼. 石墨微粒对MgO–MgO•Al2O3–C浇注料性能的影响[J]. 耐火材料, 2004, 38(2): 79–81.
SONG Linxi, WANG Linjun, ZHANG Jili. Refractories (in Chinese), 2004, 38(2): 79–81.
[15] 赵臣瑞, 张三华, 王冠, 等. 造粒石墨加入量对Al2O3–SiC–C质浇注料性能的影响[J]. 耐火材料, 2014, 48(1): 54–57.
ZHAO Chenrui, ZHANG Sanhua, WANG Guan, et al. Refectories   (in Chinese), 2014, 48(1): 54–57.
[16] DING J, DENG C J, ZHANG X J, et al. Synthesis of titanium carbide coating on surface of graphite by molten salt media[J]. J Funct Mater, 2014, 45(3): 03066–03069+03074.
[17] DUTTA S, DAS P, DAS A, et al. Significant improvement of refractoriness of Al2O3–C castables containing calcium aluminate nano-coatings on graphite[J]. Ceram Int, 2014, 40(3): 4407–4414.
[18] 肖国庆, 石佳佳, 丁冬海. 含碳铝酸钙粉体的燃烧合成及其微观表征[J]. 硅酸盐学报, 2018(6): 1–8.
XIAO Guoqing, SHI Jiajia, DING Donghai. J Chin Ceram Soc, 2018(6): 1–8.
[19] YOSHIMATSU H, FUJIWARA S, KONISHI R, et al. Wettability by water and oxidation resistance of alumina-coated graphite powder[J]. J Ceram Soc Jpn, 1995, 103(9): 929–934.
[20] DONNET J B, VOET A. Carbon black: physics, chemistry, and elastomer reinforcement[J]. J Colloid Interf Sci, 1977, 62(1) : 195–196.
[21] 高礼旋. 炭黑的表面改性与包覆[D]. 广州: 华南理工大学, 2010.
GAO Lixuan, Surface modification and encapsulation of carbon black (in Chinese, dissertation). Guangzhou:South China of Technology, 2010.
[22] WANG Y, Li X, ZHU B, et al. Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables[J]. Ceram Int, 2016, 42(9): 11355–11362.
[23] DUTTA S, DAS P, DAS A, et al. Physical characteristics of alumina–carbon refractory castables containing calcium aluminate coated graphites[J]. Inter Refract Man, 2013, 62(4): 294–298.
[24] ZHANG J, JIA Q, YAN S, et al, Microstructure and properties of hydratable alumina bonded bauxite–andalusite based castables[J], Ceram Int, 2016, 42(1): 310–316.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com