首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
原位尖晶石化反应对低碳MgO–Al2O3–C材料结构与性能的影响
作者:尚心莲1 田响宇1 2 李红霞1 王新福1 刘国齐1 杨文刚1 
单位:(1.中钢集团洛阳耐火材料研究院有限公司 先进耐火材料国家重点实验室 河南 洛阳471039 2.中国航空制造技术研究院 北京100024) 
关键词:低碳镁铝碳材料 原位反应 尖晶石 
分类号:TQ175
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 以电熔镁砂、α-Al2O3微粉、鳞片石墨、和炭黑为原料,制备低碳MgO–Al2O3–C材料。通过改变原料混炼顺序来影响材料内原位尖晶石化反应,研究了原位尖晶石化反应对低碳MgO–Al2O3–C材料结构与性能的影响。结果表明:试验温度下体系内固相反应、气–固反应均满足尖晶石生成的热力学条件。α-Al2O3微粉和炭黑经酚醛树脂造粒后以碳包覆Al2O3球体的形态存在材料中,体系内的尖晶石主要通过气–固反生成在包覆体表面,并阻碍Mg(g)向Al2O3球体内部扩散,导致1 400 ℃热处理后有Al2O3残余。尖晶石层有效地结合骨料与基质,提高了材料的力学性能。

 Low-carbon MgO–Al2O3–C materials were prepared with fused magnesia, α-Al2O3, flake graphite and carbon black as raw materials. The effect of in-situ spinel reaction on the structure and properties of low carbon MgO–Al2O3–C materials was investigated. The results show that the solid-phase reaction and gas-solid reaction in the system at the test temperature satisfy the thermodynamic conditions of spinel formation. In the materials, the microstructure of α-Al2O3 and carbon black changes into carbon-coated Al2O3 spherical particles after pelleted by phenolic resin. The spinel in the system is mainly formed on the surface of the carbon-coated Al2O3 spheres via the gas–solid reaction, and hinders the diffusion of Mg(g) into the interior of the Al2O3 sphere, resulting in residual Al2O3 after heat treatment at 1 400 ℃. The spinel layer effectively combines the aggregate with the matrix to improve the mechanical properties of the materials.

基金项目:
国家自然科学基金(51772277,51372231);河南省科技创新人才计划(164100510023);河南省基础与前言研究项目(162300410057)。
作者简介:
参考文献:

 [1] 李楠, 顾华志. 耐火材料学[M]. 北京:冶金工业出版社, 2002: 185.

[2] 李红霞, 刘国齐, 杨彬. 连铸用功能耐火材料的发展[J]. 耐火材料, 2001, 35(1): 45–49.
LI Hongxia, LIU Guoqi, YANG Shan. Refractories (in Chinese), 2001, 35(1): 45–49.
[3] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO–C refractory: Use of nano carbon[J]. Ceram Int, 2012, 38(3): 2339–2346.
[4] LI Hongxia, LIU Guoqi. Current situation and development of refractories for clean steel production[J]. China’s Refract, 2013, 22(3): 1–6.
[5] WEI Guoping, ZHU Boquan, LI Xiangcheng, et al. Microstructure and mechanical properties of low-carbon MgO–C refractories bonded by an Fe nanosheet–modified phenol resin[J]. Ceram Int, 2015, 41(1): 1553–1566.
[6] 廖宁. 纳米碳源制备低碳铝碳耐火材料微结构和力学性能研究 [D]. 武汉: 武汉科技大学, 2016.
LIAO Ning. The microstructures and mechanical properties of nano carbon sources containing low-carbon Al2O3–C refractories (in Chinese, dissertation). Wuhan: Wuhan University of Science and Technology, 2016.
[7] 李红霞. 耐火材料发展概述[J]. 无机材料学报, 2018, 38(2): 198–205.
LI Hongxia. J Inorg Mater (in Chinese), 2018, 38(2): 198–205.
[8] HASHEMI B, NEMATI Z A, FAGHIHI–SANI M A. Effects of resin and graphite content on density and oxidation behavior of MgO–C refractory bricks[J]. Ceram Int, 2006, 32(3): 313–319.
[9] LIU Zhaoyang, YU Jingkun, YANG Xin, et al. Oxidation resistance and wetting behavior of MgO–C refractories: effect of carbon content[J]. Materials, 2018, 11(6): 1–11.
[10] TRIPATHI H S, GHOSH A. Spinelisation and properties of Al2O3–MgAl2O4–C refractory: effect of MgO and Al2O3 reactants[J]. Ceram Int, 2010, 36(4): 1189–1192.
[11] SAKO E Y, BRAULIO M A L, ZINNGREBE E, et al. Fundamentals and applications on in situ spinel formation mechanisms in Al2O3–MgO refractory castables[J]. Ceram Int, 2012, 38(3): 2243–2251.
[12] DEEPAK M, DEBASISH S. Effect of in situ spinel seeding on synthesis of MgO-rich MgAl2O4 composite[J]. Mater Sci, 2007, 42(7): 7286–7293.
[13] GHASEMI–KAHRIZSANGI S, DEHSHEIKH H G, BOROUJERDNIA M. Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO–C refractory ceramic composite[J]. Mater Chem Phys, 2017, 189: 230–236.
[14] GANESH I, BHATTACHARJEE S, SAHA B P, et al. An efficient MgAl2O3 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO–C refractories[J]. Ceram Int, 2002, 28(3): 245–253.
[15] BAVAND–VANDCHALI M, SARPOOLAKY H, GOLESTANI–FARD F, et al. Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix[J]. Ceram Int, 2009, 35(2): 861–868.
[16] FAGHIHI–SANI M, YAMAGUCHI A. Oxidation kinetics of MgO–C refractory bricks[J]. Ceram Int, 2002, 28(8): 835–839.
[17] MUSANTE L, MUÑOZ V, LABADIE M H, et al. High temperature mechanical behavior of Al2O3–MgO–C refractories for steelmaking use[J]. Ceram Int, 2011, 37(5): 1473–1483.
[18] 张彦祥, 李红霞, 杨文刚, 等. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 材料导报, 2018, 32(8): 1352–1356.
ZHANG Yanxiang, LI Hongxia, YANG Wengang, et al. Mater Rev (in Chinese), 2018, 32(8): 1352–1356.
[19] EMMEL M, ANEZIRIS C G, SPONZA F, et al. In situ spinel formation in Al2O3–MgO–C filter materials for steel melt filtration[J]. Ceram Int, 2014, 40(8): 13507–13513.
[20] HALMANN M, FREI A, STEINFELD A. Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation[J]. Energy, 2007, 32(12): 2420–2427.
[21] LEFORT P, TETARD D, TRISTANT P. Formation of aluminium carbide by carbothermal reduction of alumina: Role of the gaseous aluminium phase[J]. J Eur Ceram Soc, 1993, 12(2):123–129.
[22] 罗巍, 朱伯铨, 李享成, 等. MgO–C耐火材料中陶瓷相的原位生成机理及其对材料力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(S1): 438–441.
LUO Wei, ZHU Boquan, LI Xiangcheng, et al. Rare Metal Mater Eng (in Chinese), 2015, 44(S1): 438–441.
[23] LIU Yuhong, JING Xinli. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J]. Carbon, 2007, 45(10): 1965–1971.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com