首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
镁铝和锌铝水滑石作为润滑油添加剂的摩擦性能和机理
作者: 硕1 任玲玲1 白志民2 田芙蓉3  良2 
单位:(1. 中国计量科学研究院纳米新材料计量研究所 北京 100029 2. 中国地质大学(北京)材料科学与工程学院 北京 100083 3. 陕西省轻化工助剂重点实验室 陕西科技大学 西安 710021) 
关键词:水滑石 润滑油固体添加剂 抗磨损性能 X射线光电子能谱 协同效应 
分类号:O641
出版年,卷(期):页码:2019,47(3):0-0
DOI:
摘要:

 利用共沉淀法,合成了镁铝水滑石和锌铝水滑石。采用X射线粉末衍射、扫描电子显微镜和X射线荧光光谱对粉末进行了表征。利用四球摩擦磨损试验机对水滑石粉体作为润滑油固体添加剂的摩擦特性进行了测试。采用扫描电子显微镜和X射线光电子能谱对磨损表面进行了分析。结果表明:2种水滑石均具有典型的六方片层结构,晶粒尺寸在100~200 nm之间。四球摩擦磨损试验中,2种水滑石润滑的磨损表面的主要元素化学态接近。锌铝水滑石与润滑油自身极压抗磨剂二烷基二硫代磷酸锌协同增效,提高了磨损表面Zn元素含量,其抗磨损特性明显优于镁铝水滑石。此外,锌铝水滑石也促进了摩擦副表面的氧化,减少了C元素的沉积。

 The Mg/Al- and Zn/Al-layered double hydroxides (LDHs) as solid lubricant additives were synthesized by a coprecipittion method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray fluorescence (XRF). The friction properties of LDHs were determined by a four-ball friction tester, and the rubbed areas were analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The results show that Mg/Al- and Zn/Al-LDHs both have a typical heagonal laminated structure and the grain diameters are in the range of 100–200 nm. The anti-wear properties of Zn/Al-LDHs are superior to those of Mg/Al-LDHs. The chemical states of main elements on the worn surface with Mg/Al- and Zn/Al-LDHs are similar. It is indicated that Zn/Al-LDHs have a synergistic effect with zinc dialkyl dithiophosphate on the increase of the Zn content for the improvement of the anti-wear properties, compared to Mg/Al-LDHs. Also, Zn/Al-LDHs promote the oxidation of metal surface and reduce the carbon content.

 
基金项目:
国家重点研发计划—重大装备用矿物减摩修复材料制备技术及应用示范(2017YFB0310703)和微纳米尺度薄膜材料结构和热电参数计量技术研究(2017YFF0204706)。
作者简介:
参考文献:

 [1] BAI Z M, WANG Z Y, ZHANG T G, et al. Synthesis and characterization of Co-Al-CO3 layered double-metal hydroxides and assessment of their friction performances[J]. Appl Clay Sci, 2012, 59/60: 36–41.

[2] ZHAO D, BAI Z M, ZHAO F Y. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability[J]. Mater Res Bull, 2012, 47(11): 3670–3675.
[3] BAI Z M, WANG Z Y, ZHANG T G, et al. Characterization and friction performances of Co-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate[J]. Appl Clay Sci, 2013, 75/76: 22–27.
[4] WANG X B, BAI Z M, ZHAO D et al. Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite[J]. Appl Surf Sci, 2013, 277: 134–138.
[5] LI S, BAI Z M, ZHAO D. Characterization and friction performance of Zn/Mg/Al-CO3 layered double hydroxides[J]. Appl Surf Sci, 2013, 284: 7–12. 
[6] ZHAO D, SHAM T-K, KASRAI M, et al. Tribological properties of Mg/Al-CO3 layered double hydroxide as additive in base oil[J]. Tribol-Mater, Surf & Inter, 2014, 8(4): 222–234.
[7] BAI Z M, LI S, WANG Z Y, et al. Synthesis of Co-Al-layered double-metal hydroxides and the friction performance[J]. J Chin Ceram Soc, 2014, 1(1): 70–77.
[8] LI S, QIN H J, ZUO R F, et al. Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives[J]. Appl Surf Sci, 2015, 353: 643–650.
[9] ZHAO D, KASRAI M, SHAM T-K, et al.  Preparation of platy Co/Al hydrotalcites using aluminum hydroxide and investigation of their tribological properties in base oil[J]. Can J Chem, 2015, 93(2): 151–159.
[10] LI S, QIN H J, ZUO R F, et al. Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives[J]. Tribol Int, 2015, 91: 60–66.
[11] LI S, BHUSHAN B. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives[J] Appl Surf Sci, 2016, 378: 308–319.
[12] CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays: preparation, properties and applications[J]. Catal Today, 1991, 11(2): 173–301.
[13] RIVES V. Layered Double Hydroxides: Present and Future[M]. New York: Nova Science Publishers, 2001.
[14] DUAN X, EVANS D G. Layered Double Hydroxides[M]. Berlin: Springer, 2006.
[15] QI X W, LU L, JIA Z N, et al. Comparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperature[J]. Tribol Int, 2012, 49: 53–57.
[16] ZHAO F Y, BAI Z M, FU Y, et al. Tribological properties of serpentine, La(OH)3 and their composite particles as lubricant additives[J]. Wear, 2012, 288: 72–77.
[17] LIU W M, CHEN S. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin[J]. Wear, 2000, 238(2): 120–124.
[18] MCINTYRE N S, ZETARUK D G. X-ray photoelectron spectroscopic studies of iron oxides[J]. Anal Chem, 1977, 49(11): 1521–1529.
[19] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci, 2008, 254(8): 2441–2449.
[20] ZHANG B S, XU Y, GAO F, et al. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive[J]. Appl Surf Sci, 2011, 257(7): 2540–2549. 
[21] ZHANG M, WANG X B, FU X S, et al. Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha- olefin[J]. Tribol Int, 2009, 42(7): 1029–1039.
[22] POTTIRAYIL A, KAILAS S V, BISWAS S K. Lubricity of an oil in water emulsion in metal cutting: The effect of hydrophilic/lypophilic balance of emulsifiers[J]. Colloids Surf A, 2011, 384(1/2/3): 323–330.
[23] YU H L, XU Y, SHI P J, et al. Microstructure, mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive[J]. Wear, 2013, 297(1/2): 802–810.
[24] XUE Q J, LIU W M, ZHANG Z J. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin[J]. Wear, 1997, 213(1/2): 29–32.
[25] ZHANG Z F, YU L G, LIU W M, et al. The effect of LaF3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system[J]. Tribol Int, 2001, 34(2): 83–88.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com