[1] DONG C, LU J, QIU B, et al. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions[J]. Appl Catal B, 2018, 222: 146–156.
[2] DAYI B, KYZY A D, ABDULOGLU Y, et al. Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta[J]. Dyes Pigments, 2018, 151:15–21.
[3] GHANEIAN M T, EHRAMPOUSH M H, EHSANZADEH E, et al. Upgrading secondary wastewater plant effluent by modified coagulation and flocculation, for water reuse in irrigation[J]. J Water Reuse Desal, 2017, 7(3): 298–306.
[4] MALEKI A, HAYATI B, NAGHIZADEH M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. J Ind Eng Chem, 2015, 28: 211–216.
[5] 高续春, 代宏哲, 赵鹏, 等. 微波法合成的氮化碳光催化降解苯酚及其机理[J]. 硅酸盐学报, 2017, 45(10): 1503–1509.
GAO Lianchun, DAI Hongzhe, ZHAO Peng, et al. J Chin Ceram Soc, 2017, 45(10): 1503–1509.
[6] KAMENEV I, VIIROJA A, KALLAS J. Aerobic bio-oxidation with ozonation for recalcitrant wastewater treatment[J]. J Adv Oxid Technol, 2016, 11(2): 338–347.
[7] TEH C Y, BUDIMAN P M, SHAK K P Y, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Ind Eng Chem Res, 2016, 55(16): 4363–4389.
[8] ASGHAR A, RAMAN A A A, DAUD W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review[J]. J Clean Prod, 2015, 87(2): 826–838.
[9] Omorogie M O, Babalola J O, Unuabonah E I, et al. Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii, seed biomass waste[J]. J Saudi Chem Soc, 2016, 20(1): 49–57.
[10] 陶丽琴, 赵义侠, 康卫民, 等. 聚四氟乙烯超细纤维负载二氧化钛光催化性能[J]. 硅酸盐学报, 2016, 44(1): 89–94.
TAO Liqin, ZHAO Yixia, KANG Weimin, et al. J Chin Ceram Soc, 2016, 44(1): 89–94.
[11] PRAKASH K, KUMAR P S, LATHA P, et al. Design and fabrication of a novel metal-free SiO2/g-C3N4 nanocomposite: A robust photocatalyst for the degradation of organic contaminants[J]. J Inorg Organomet P, 2018, 28(1): 268–278.
[12] 李翠霞, 吴强红, 曾鹏飞, 等. 氧化石墨烯-镝掺杂二氧化钛复合光催化材料的制备及光催化性能[J]. 硅酸盐学报, 2016, 44(6): 872–877.
LI Cuixia, WU Qianghong, ZENG Pengfei, et al. J Chin Ceram Soc, 2016, 44(6): 872–877.
[13] BHATTACHARYA S, BALA S, MONDAL R. Design of chiral Co(II)-MOFs and their application in environmental remediation and waste water treatment[J]. Rsc Adv, 2016, 6(30): 25149–25158.
[14] NASALEVICH M, BECKER R, FERNANDEZ E V R, et al. Co@NH2-MIL-125(Ti): Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production[J]. Energy Environ Sci, 2015, 8(1): 364–375.
[15] BHATTACHARYA S, BALA S, MONDAL R. Design of chiral Co(II)-MOFs and their application in environmental remediation and waste water treatment[J]. Rsc Adv, 2016, 6(30): 25149–25158.
[16] JHUNG S H, KHAN N A, HASAN Z. Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption[J]. Crystengcomm, 2012, 14(21): 7099–7109.
[17] GE Y, LI N Y, JI X Y, et al. Assembly of a series of zinc coordination polymers based on 1, 4-bis [2-(4-pyridyl) ethenyl]-2,3,5,6-tetramethylbenzene and 1,3-benzenedicarboxylate derivatives[J]. Crystengcomm, 2014, 16(29): 6621–6629.
[18] DAI M, SU X R, WANG X, et al. Three zinc (II) coordination polymers based on tetrakis (4-pyridyl) cyclobutane and naphthalenedicarboxylate linkers: Solvothermal syntheses, structures, and photocatalytic properties[J]. Cryst Growth Des, 2013, 14(1): 240–248.
[19] YIN W Y, HUANG Z L, TANG X Y, et al. Structural diversification and photocatalytic properties of zinc(II) polymers modified by auxiliary N-containing ligands[J]. New J Chem, 2015, 39(9): 7130–7139.
[20] DU J Q, DONG J L, XIE F, et al. Syntheses, structures, and properties of three mixed-ligand complexes based on 3,6-bis (imidazole-1-yl) pyridazine[J]. J Mol Struct, 2019, 1175: 754–762.
[21] ZHU W, YANG X Y, LI Y H, et al. A novel porous molybdophosphate-based FeII, III-MOF showing selective dye degradation as a recyclable photocatalyst[J]. Inorg Chem Commun, 2014, 49: 159–162.
[22] QIN L, CHEN H Z, LEI J, et al. Photodegradation of some organic dyes over two metal-organic frameworks with especially high efficiency for safranine T[J]. Cryst Growth Des, 2017, 17(3): 1293–1298.
[23] LI H, HE Y, ZHAO W, et al. Designing different functional frameworks from 0D to 3D for exploring structural correlation with photocatalytic activity[J]. Polyhedron, 2017, 133: 412–418.
[24] 高倩, 谢亚勃, 张超艳, 等. 5,6-二羧基苯并咪唑双核铕配合物的合成、结构及荧光性能[J]. 无机化学学报, 2009, 25(5): 924–928.
GAO Qian, XIE Yabo, ZHANG Chaoyan, et al. Chin J Inorg Chem (in Chinese), 2009, 25(5): 924–928.
[25] 郭征楠, 刘峥, 魏席, 等. 以1,2,4,5-苯四甲酸或1,2,3,4-丁烷四羧酸为配体的金属有机框架的合成、表征及性质[J]. 无机化学学报, 2016, 32(1): 9–17.
GUO Zhengnan, LIU Zheng, WEI Xi, et al. Chin J Inorg Chem (in Chinese), 2016, 32(1): 9–17.
[26] 陈颖, 赵宇, 李静, 等. 共模板法一步合成绣球状BiOCl/Br固溶体光催化剂[J]. 高等学校化学学报, 2017, 38(11): 2045–2052.
CHEN Ying, ZHAO Yu, LI Jing, et al. Chem J Chin Univ (in Chinese), 2017, 38(11): 2045–2052.
|