首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Cu-TiO2/白云母纳米复合材料的制备及结构、形貌和光催化性能
作者: 瑶1 2 3 彭同江2 3 孙红娟1 2 3  青1 2 3 
单位:(1. 西南科技大学环境与资源学院 四川 绵阳 621010 2. 西南科技大学 固体废物处理与资源化教育部重点实验室 四川 绵阳 621010 3. 西南科技大学矿物材料及应用研究所 四川 绵阳 621010) 
关键词:液相沉淀法 铜离子掺杂 二氧化钛/白云母纳米复合材料 光催化剂 
分类号:O643.36; TB383.1
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 为提高TiO2型光催化剂对可见光的响应及光催化效率,采用液相沉淀法制备出Cu-TiO2/白云母纳米复合材料,研究了复合材料的结构、形貌和光催化性能。结果表明:Cu2+取代部分Ti4+进入TiO2晶格中,使TiO2发生晶格畸变并阻滞了纳米TiO2晶粒的长大。TiO2均匀致密地包覆在白云母表面,减少了团聚从而大大增加了TiO2在光催化中与污染物的接触面积。Cu2+掺杂有效减小了TiO2的禁带宽度并使光学吸收边发生红移。Cu-TiO2/白云母复合纳米材料的光催化性能随着掺Cu2+量   增加先增强后降低,当Cu2+/Ti4+摩尔比为1.5%,Cu-TiO2/白云母复合纳米材料用量为0.10 g时,对100 mL的亚甲基蓝光催化1 h后,亚甲基蓝的降解率为100%。

 In order to improve the response of TiO2 photocatalyst to visible light and photocatalytic efficiency, Cu-TiO2/muscovite nanocomposite material was prepared by a liquid phase precipitation method, and the microstructures, morphologies and photocatalytic properties of the nanocomposites were investigated. The results show that Cu2+ doping causes the lattice distortion of TiO2 and inhibits the growth of TiO2 nano-particles. TiO2 is uniformly dense and coated on the surface of muscovite, thus greatly increasing the contact area between TiO2 and pollutants in photo-catalysis. Cu2+-doping makes the optical absorption edge of TiO2 redshift, and effectively reduces its forbidden bandwidth. When the amount of Cu2+/Ti4+ molar ratio is 1.5%, the nanocomposite has the optimal photocatalytic properties. The maximum photocatalytic degradation of 100 L methylene blue occurs at 0.10 g catalyst, and the degradation rate of methylene blue is 100% in 1 h.

基金项目:
四川省教育厅创新团队项目(14TD0012)。
作者简介:
参考文献:

 [1] GRIMES C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. J Mater Chem, 2007, 17(15): 1451–1457.

[2] CLEMENS Burda, YONGBING Lou, XIAOBO Chen, et al. Enhanced Nitrogen Doping in TiO2 Nanoparticles[J]. Nano Lett, 2003, 3(8):  1049–1051.
[3] 张宏忠, 秦小青, 王明花. 石墨烯/TiO2复合物的制备及其光催化性能[J]. 环境工程学报, 2016, 10(1): 169–174.
ZHANG Hongzhong, QIN Xiaoqing, WANG Minghua. Chin J Environ Eng(in Chinese), 2016, 10(1): 167–174.
[4] LIANG H, WANG Z, LIAO L, et al. High performance photocatalysts: Montmorillonite supported-nano TiO2, composites[J]. OPTIK, 2017, 136: 44–51.
[5] 梁金生, 冯艳文, 梁广川, 等. 电气石/TiO2复合薄膜的显微结构及光催化活性研究[J]. 硅酸盐学报, 2004, 32(5): 652–655.
LIANG Jinsheng, FENG Yanwen, LIANG Guangchuan, et al. J Chin Ceram Soc, 2004, 32(5): 652–655.
[6] 彭书传, 谢晶晶, 庆承松, 等. 负载TiO2凹凸棒石光催化氧化法处理酸性品红染料废水[J]. 硅酸盐学报, 2006, 34(10): 1208–1212.
PENG Shuchuan, XIE Jingjing, QING Chengsong, et al. J Chin Ceram Soc, 2006, 34(10): 1208–1212.
[7] ZHOU S, LV J, GUO L K, et al. Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites[J]. Appl Surf Sci, 2012, 258(16): 6136–6141.
[8] 刘子传, 郑经堂, 赵东风, 等. 金属离子掺杂改性纳米TiO2的能带结构及其光催化性能[J]. 硅酸盐学报, 2013, 41(3): 402–408. 
LIU Zichuan, ZHENG Jingtang, ZHAO Dongfeng, et al. J Chin Ceram Soc, 2013, 41(3): 402–408.
[9] RICHARDSON P L, PERDIGOTO M L N, WANG W, et al. RETRACTED: Manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol[J]. Appl Catal B Environ 2012, 126(38): 200–207.
[10] 唐守强, 何菁萍, 张昭. 铁掺杂介孔二氧化钛的制备及其光催化性能[J]. 硅酸盐学报, 2012, 40(7): 951–956.
TANG Shouqiang, HE Jingping, ZHANG Zhao. J Chin Ceram Soc, 2012, 40(7): 951–956.
[11] LI G, DIMITRIJEVIC N M, LE C, et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO−TiO2 nanocomposites[J]. J Phys Chem C, 2008, 112(48): 19040–19044.
[12] MAJEED I, NADEEM M A, BADSHAH A, et al. Titania supported MOF-199 derived Cu-Cu2O nanoparticles: highly efficient non-noble metal photocatalysts for hydrogen production from alcohol-water mixtures[J]. Catal Sci Technol, 2017, 7(3): 677–686.
[13] IRIE H, MIURA S, KAMIYA K, et al. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2, and WO3, photocatalysts[J]. Chem Phys Lett, 2008, 457(1): 202–205.
[14] SONG G B, LIANG J K, LIU F S, et al. Preparation and phase transformation of anatase–rutile crystals in metal doped TiO2/muscovite nanocomposites[J]. Thin Solid Films, 2005, 491(1): 110–116.
[15] 马明远, 李佑稷. 铁离子掺杂对TiO2的晶粒生长及晶化过程的影 响[J]. 硅酸盐学报, 2010, 38(1): 137–142.
MA Mingyuan, LI Youji. J Chin Ceram Soc, 2010, 38(1): 137–142.
[16] LI L, YU L, LIN Z, et al. Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water splitting photocatalysts.[J]. ACS Appl Mater Interfaces, 2016, 8(13): 8536–8545.
[17] 赵立艳, 王学恺, 郭玉国, 等. 亚甲基蓝在云母表面吸附状态的研究[J]. 物理化学学报, 2003, 19(10): 896–901.
ZHAO Liyan, WANG Xuekai, GUO Yuguo, et al. Acta Phys-Chim Sin(in Chinese), 2003, 19(10): 896–901.
[18] OROPEZA F E, ZHANG K H L, REGOUTZ A, et al. Growth of epitaxial anatase nano islands on SrTiO3(001) by dip coating[J]. Cryst Growth Des, 2013, 13(4): 1438–1444.
[19] CHEN S, ZHANG S, ZHAO W, et al. Study on the photocatalytic activity of TiN/TiO2, nanoparticle formed by ball milling[J]. J Nanopart Res, 2009, 11(4): 931–938.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com