首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
NiCrN涂层相成分调控及腐蚀磨损机理
作者: 英1  乐2  巫业栋2  林1  飞1  侠1 王启民3 张世宏1 2 
单位:(1. 安徽工业大学现代表界面工程研究中心 安徽 马鞍山 243002 2. 安徽工业大学材料科学与工程学院 安徽 马鞍山 243002 3. 广东工业大学机电工程学院 广州 510006) 
关键词:镍铬氮涂层 电弧离子镀 相成分 腐蚀磨损 
分类号:TG148
出版年,卷(期):页码:2019,47(4):0-0
DOI:
摘要:

 采用电弧离子镀技术在42CrMo钢基体上沉积NiCrN涂层,通过改变N2流量来调控涂层的相成分,并研究其对腐蚀磨损性能的影响规律。研究表明:随着N2流量的增加,CrN相含量增加,金属Ni、Cr相含量相对降低,并导致涂层的硬度由530 HV逐渐升高至710 HV。涂层的腐蚀电位随着CrN相含量增加而逐渐正移,腐蚀电流密度基本维持在同一数量级。在腐蚀磨损的中后期,涂层的失效形式以点蚀为主。随着涂层中CrN相含量增加,涂层的耐点蚀性能变差。最后,详细讨论了涂层的腐蚀磨损机理。

 NiCrN coatings were fabricated on 42CrMo steels via arc ion plating. The phase composition at different nitrogen flowrates was regulated, and the effect of nitrogen flowrate on the corrosive wear performance was also investigated. The results show that the content of CrN phase increases and the amounts of metallic Ni and Cr phases decrease with the increase of nitrogen flowrate, leading to an increase in coating microhardness from 530 HV to 710 HV. The corrosion potential shifts towards the positive direction due to the contribution of CrN phase, while the corrosion current density maintains in the same order of magnitude. In the middle and late periods of the corrosive wear experiments, pitting corrosion is determined as a main failure mode of the coating. The pitting corrosion resistance of the coatings deteriorates when the content of CrN phase increases. In addition, the corrosive wear mechanism was also discussed.

基金项目:
安徽省重点研究和开发计划项目(1804b06020370)。
作者简介:
参考文献:

 [1] 吴大维. 硬质薄膜材料的最新发展及应用[J]. 真空, 2003, 6: 1–5. 

WU Dawei. Vaccum (in Chinese), 2003, 6: 1–5. 
[2] 韩滔, 邓春明, 刘敏, 等. 常规超音速和低温超音速火焰喷涂WC-10Co-4Cr涂层的断裂韧性[J]. 硅酸盐学报, 2014, 42(3): 409–415. 
HAN Tao, DENG Chunming, LIU Min, et al. J Chin Ceram Soc, 2014, 42(3): 409–415. 
[3] 钱扬保, 张伟刚. 大气等离子喷涂ZrSiO4涂层的物相转变行为[J]. 硅酸盐学报, 2008, 36(8): 1103–1108. 
QIAN Yangbao, ZHANG Weigang. J Chin Ceram Soc, 2008, 36(8): 1103–1108. 
[4] 韩立民. 等离子热处理[M]. 天津: 天津大学出版社, 1997: 178–179. 
[5] LUCIU I, DUDAY D, CHOQUET P, et al. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target [J]. Appl Surf Sci, 2016, 389: 578–584. 
[6] CHENG W L, ZHOU Z F, SHUM P W, et al. Effect of Ni addition on the structure and properties of Cr?Ni–N coatings deposited by closed-field unbalanced magnetron sputtering ion plating[J]. Surf Coat Technol, 2013, 229: 84–89. 
[7] JIN J, ZHENG D C, HAN S W, et al. Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell[J]. Int J Hydrogen Energy, 2017, 42: 1142–1153. 
[8] NAM N D, AHN J H, LEE N E, et al. Electrochemical evaluation of the reliability of plasma-polymerized methylcyclohexane films[J]. Mater Res Bull, 2010, 45: 269–274. 
[9] KARVÁNKOVÁ P, MÄNNLING H D, EGGS C, et al. Thermal stability of ZrN-Ni and CrN–Ni superhard nanocomposite coatings[J]. Surf Coat Technol, 2001, 146–147: 280–285. 
[10] REGENT F, MUSIL J. Magnetron sputtered Cr–Ni–N and Ti–Mo–N films: Comparison of mechanical properties[J]. Surf Coat Technol, 2001, 142/144: 14) 6–151. 
[11] KAWAMURA M, ABE Y, SASAKI K. Formation process of Ni–N films by reactive sputtering at different substrate temperatures[J]. Vacuum, 2000, 59: 721–726. 
[12] LINNIK A I, PRUDNIKOV A M, SHALAEV R V, et al. Magnetic properties and thermal modification of nanostructured films of nickel nitrides[J]. Tech Phys Lett, 2013, 39: 143–146. 
[13] ZHANG Z G, RAPAUD O, ALLAIN N, et al. Influence of Ni content on the structure and properties of Cr–Ni–N coatings prepared by direct current magnetron sputtering[J]. Thin Solid Films, 2009, 517: 3304–3309. 
[14] BARNA P B, ADAMIK M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J]. Thin Solid Films, 1998, 317: 27–33. 
[15] MUSIL J, VL?EK J. Magnetron sputtering of hard nanocomposite coatings and their properties[J]. Surf Coat Technol, 2001, 142/144: 557–566. 
[16] TURCHI P E A, KAUFMAN L, LIU Z K. Modeling of Ni–Cr–Mo based alloys: Part I-phase stability[J]. Calphad, 2006, 30: 70–87. 
[17] 朱晓东, 米彦郁, 胡奈赛, 等. 膜基结合强度评定方法的探讨—划痕法、压入法、接触疲劳法测定的比较[J]. 中国表面工程, 2002, 4: 28–31. 
ZHU Xiaodong, MI Yanyu, HU Naisai, et al. Chin Surf Eng (in Chinese), 2002, 4: 28–31. 
[18] WANG H W, STACK M M, LYON S B, et al. The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J]. Surf Coat Technol, 2000, 126: 279–287. 
[19] DONG H, SUN Y, BELL T. Enhanced corrosion resistance of duplex coatings[J]. Surf Coat Technol, 1997, 90: 91–101. 
[20] ABUSUILIK S B, INOUE K. Effects of intermediate surface treatments on corrosion resistance of cathodic arc PVD hard coatings[J]. Surf Coat Technol, 2013, 237: 421–428. 
[21] PANJAN P, MERL D K, ZUPANI? F, et al. SEM study of defects in PVD hard coatings using focused ion beam milling[J]. Surf Coat Technol, 2008, 202: 2302–2305. 
[22] MUDGAL D, AHUJA L, SINGH S, et al. Corrosion behaviour of Cr3C2–NiCr coated superalloys under actual medical waste incinerator[J]. Surf Coat Technol, 2017, 325: 145–156. 
[23] AHN S H, LEE J H, KIM J G, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects[J]. Surf Coat Technol, 2004, 177/178: 638–644.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com