[1] 吴大维. 硬质薄膜材料的最新发展及应用[J]. 真空, 2003, 6: 1–5.
WU Dawei. Vaccum (in Chinese), 2003, 6: 1–5.
[2] 韩滔, 邓春明, 刘敏, 等. 常规超音速和低温超音速火焰喷涂WC-10Co-4Cr涂层的断裂韧性[J]. 硅酸盐学报, 2014, 42(3): 409–415.
HAN Tao, DENG Chunming, LIU Min, et al. J Chin Ceram Soc, 2014, 42(3): 409–415.
[3] 钱扬保, 张伟刚. 大气等离子喷涂ZrSiO4涂层的物相转变行为[J]. 硅酸盐学报, 2008, 36(8): 1103–1108.
QIAN Yangbao, ZHANG Weigang. J Chin Ceram Soc, 2008, 36(8): 1103–1108.
[4] 韩立民. 等离子热处理[M]. 天津: 天津大学出版社, 1997: 178–179.
[5] LUCIU I, DUDAY D, CHOQUET P, et al. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target [J]. Appl Surf Sci, 2016, 389: 578–584.
[6] CHENG W L, ZHOU Z F, SHUM P W, et al. Effect of Ni addition on the structure and properties of Cr?Ni–N coatings deposited by closed-field unbalanced magnetron sputtering ion plating[J]. Surf Coat Technol, 2013, 229: 84–89.
[7] JIN J, ZHENG D C, HAN S W, et al. Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell[J]. Int J Hydrogen Energy, 2017, 42: 1142–1153.
[8] NAM N D, AHN J H, LEE N E, et al. Electrochemical evaluation of the reliability of plasma-polymerized methylcyclohexane films[J]. Mater Res Bull, 2010, 45: 269–274.
[9] KARVÁNKOVÁ P, MÄNNLING H D, EGGS C, et al. Thermal stability of ZrN-Ni and CrN–Ni superhard nanocomposite coatings[J]. Surf Coat Technol, 2001, 146–147: 280–285.
[10] REGENT F, MUSIL J. Magnetron sputtered Cr–Ni–N and Ti–Mo–N films: Comparison of mechanical properties[J]. Surf Coat Technol, 2001, 142/144: 14) 6–151.
[11] KAWAMURA M, ABE Y, SASAKI K. Formation process of Ni–N films by reactive sputtering at different substrate temperatures[J]. Vacuum, 2000, 59: 721–726.
[12] LINNIK A I, PRUDNIKOV A M, SHALAEV R V, et al. Magnetic properties and thermal modification of nanostructured films of nickel nitrides[J]. Tech Phys Lett, 2013, 39: 143–146.
[13] ZHANG Z G, RAPAUD O, ALLAIN N, et al. Influence of Ni content on the structure and properties of Cr–Ni–N coatings prepared by direct current magnetron sputtering[J]. Thin Solid Films, 2009, 517: 3304–3309.
[14] BARNA P B, ADAMIK M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models[J]. Thin Solid Films, 1998, 317: 27–33.
[15] MUSIL J, VL?EK J. Magnetron sputtering of hard nanocomposite coatings and their properties[J]. Surf Coat Technol, 2001, 142/144: 557–566.
[16] TURCHI P E A, KAUFMAN L, LIU Z K. Modeling of Ni–Cr–Mo based alloys: Part I-phase stability[J]. Calphad, 2006, 30: 70–87.
[17] 朱晓东, 米彦郁, 胡奈赛, 等. 膜基结合强度评定方法的探讨—划痕法、压入法、接触疲劳法测定的比较[J]. 中国表面工程, 2002, 4: 28–31.
ZHU Xiaodong, MI Yanyu, HU Naisai, et al. Chin Surf Eng (in Chinese), 2002, 4: 28–31.
[18] WANG H W, STACK M M, LYON S B, et al. The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings[J]. Surf Coat Technol, 2000, 126: 279–287.
[19] DONG H, SUN Y, BELL T. Enhanced corrosion resistance of duplex coatings[J]. Surf Coat Technol, 1997, 90: 91–101.
[20] ABUSUILIK S B, INOUE K. Effects of intermediate surface treatments on corrosion resistance of cathodic arc PVD hard coatings[J]. Surf Coat Technol, 2013, 237: 421–428.
[21] PANJAN P, MERL D K, ZUPANI? F, et al. SEM study of defects in PVD hard coatings using focused ion beam milling[J]. Surf Coat Technol, 2008, 202: 2302–2305.
[22] MUDGAL D, AHUJA L, SINGH S, et al. Corrosion behaviour of Cr3C2–NiCr coated superalloys under actual medical waste incinerator[J]. Surf Coat Technol, 2017, 325: 145–156.
[23] AHN S H, LEE J H, KIM J G, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects[J]. Surf Coat Technol, 2004, 177/178: 638–644.
|