首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水泥–石灰石粉胶凝材料孔结构多重分形特征以及与渗透性的关系
作者:郭明磊   左胜浩 
单位:(中南大学土木工程学院 长沙 410075) 
关键词:石灰石粉 孔结构 多重分形 渗透性 
分类号:TU528.01
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 采用压汞法测试了水泥–石灰石粉浆体孔结构,基于热力学模型探讨了其多重分形特征以及与渗透性之间的关系。结果表明:水泥–石灰石粉浆体孔结构具有多重分形特征,阈值孔径至孔体积微分曲线上初次剧增对应的孔径之间(孔径范围II)(过渡区域)不具备分形特征,孔径范围I(小于孔径范围II,小孔分形区域)和孔径范围III(大于孔径范围II,大孔分形区域)具有分形特征,前者的分形维数大于后者;随石灰石粉掺量增加,孔径范围I和III的分形维数分别提高和降低,并对孔径范围I的影响更加明显;整个孔径范围的分形维数不宜用于分析渗透性,而应针对与渗透性相关的孔径小于临界孔径的范围进行分形,得到的分形维数能有效用于计算渗透系数,随石灰石粉掺量增加,该分形维数越大,渗透系数越大,且与渗透性有着良好的相关性。

 The pore structure of cement pastes with ground limestone was measured by mercury intrusion porosimetry, and the multifractal characteristics and its relationship with permeability were determined based on a thermodynamic model. The results show that the pore structure of cement pastes with ground limestone has a multifractal nature. The region II (transition region) in the differential pore volume curve shows no clear fractal properties. The region I (below region II, micro-fractal region) and region III (above region II, macro-fractal region) exhibit the strong fractal properties. The fractal dimension of region I is greater than that of region III, and the former increases while the latter decreases with increasing the ground limestone content. The fractal dimension of the whole pore size region is not suitable for the analysis of permeability. The pore range of fractal regions is related to the permeability. The fractal dimension can be used to calculate the permeability coefficient. The increase of ground limestone content leads to greater fractal dimension and permeability coefficient.

基金项目:
作者简介:
参考文献:

 [1] BENTZ D P, ARDANI A, BARRETT T, et al. Multi-scale investigation of the performance of limestone in concrete[J]. Constr Build Mater, 2014, 75: 1–10.

[2] ELGALHUD A A, DHIR R K, GHATAORA G. Limestone addition effects on concrete porosity[J]. Cem Concr Compos, 2016, 72: 222–234.
[3] 肖佳, 金勇刚, 勾成福, 等. 石灰石粉对水泥浆体水化特性及孔结构的影响[J]. 中南大学学报(自然科学版), 2010, 41(6): 2313–2320.
XIAO Jia, JIN Yong-gang, GOU Cheng-fu, et al. J Central South Univ (Sci Technol) (in Chinese), 2010, 41(6): 2313–2320.
[4] 刘数华, 王军. 石灰石粉对砂浆孔结构的影响[J]. 建筑材料学报, 2011, 14(4): 532–535.
LIU Shuhua, WANG Jun. J Build Mater (in Chinese), 2011, 14(4): 532–535.
[5] BOEL V, DE SCHUTTER G. Porosity of superplasticised cement paste containing limestone filler[J]. Adv Cem Res, 2006, 18(3): 97–102.
[6] TSIVILIS S, CHANIOTAKIS E, BATIS G, et al. The effect of clinker and limestone quality on the gas permeability, water absorption and pore structure of limestone cement concrete[J]. Cem Concr Compos, 1999, 21(2): 139–146.
[7] PIPILIKAKI P, BEAZI-KATSIOT M. The assessment of porosity and pore size distribution of limestone Portland cement pastes[J]. Constr Build Mater, 2009, 23(5): 1966–1970.
[8] PANESAR D K, FRANCIS J. Influence of limestone and slag on the pore structure of cement paste based on mercury intrusion porosimetry and water vapour sorption measurements[J]. Constr Build Mater, 2014, 52(2): 52–58
[9] ZENG Q, LUO M, PANG X, et al. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials[J]. Appl Surface Sci, 2013, 282: 302–307.
[10] GAO Y, JIANG J, SCHUTTER G D, et al. Fractal and multifractal analysis on pore structure in cement paste[J]. Constr Build Mater, 2014, 69(11): 253–261.
[11] BERNAL J L P, BELLO M A. Fractal geometry and mercury porosimetry. Comparison and application of proposed models on building stones[J]. Appl Surface Sci, 2001, 185(1-2): 99–107.
[12] PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three. I: Fractal theory of heterogeneous surfaces[J]. J Chem Phys, 1983, 79(7): 3558–3565.
[13] 金珊珊, 张金喜, 陈春珍,等. 水泥砂浆孔结构分形特征的研究[J]. 建筑材料学报, 2011, 14(1): 92–97.
JIN Shanshan, ZHANG Jinxi, CHEN Chunzhen, et al. J Build Mater (in Chinese), 2011, 14(1): 92–97.
[14] 宋军伟, 方坤河, 刘冬梅, 等. 压汞测孔评价磷渣-水泥浆体材料孔隙分形特征的试验[J]. 武汉大学学报(工学版), 2008, 41(6): 41–45.
SONG Junwei, FANG Kunhe, LIU Dongmei, et al. Eng J Wuhan Univ (Eng Sci) (in Chinese), 2008, 41(6): 41–45. 
[15] 李永鑫, 陈益民, 贺行洋, 等. 粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J]. 硅酸盐学报, 2003, 31(8): 774–779.
LI Yongxing, CHEN Yimin, HE Xinyang et al. J Chin Ceram Soc, 2003, 31(8): 774–779.
[16] JI X, CHAN S Y N, FENG N. Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials[J]. Cem Concr Res, 1997, 27(11): 1691–1699.
[17] TAN X H, LIU J Y, LI X P, et al. A simulation method for permeability of porous media based on multiple fractal model[J]. Int J Eng Sci, 2015, 95: 76–84.
[18] YU B, Cheng P. A fractal permeability model for bi-dispersed porous media[J]. Int J Heat Mass Transfer, 2002, 45(14): 2983–2993.
[19] XU P, YUB. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J]. Adv Water Res, 2008, 31(1): 74–81.
[20] LIU R, YU L, JIANG Y, et al. Recent developments on relationships between the equivalent permeability and fractal dimension of two-dimensional rock fracture networks[J]. J Nat Gas Sci Eng, 2017, 45: 771–785.
[21] XU Y. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computers Geotech, 2004, 31(7): 549–557.
[22] ATZENI C, PIA G, SANNA U. Fractal modelling of medium-high porosity SiC ceramics[J]. J Eur Ceram Soc, 2008, 28(14): 2809–2814.
[23] ATZENI C, PIA G, SANNA U. A geometrical fractal model for the porosity and permeability of hydraulic cement pastes[J]. Constr Build Mater, 2010, 24(10): 1843–1847.
[24] WINSLOW D N. The fractal nature of the surface of cement paste[J]. Cem Concr Res, 1985, 15(5): 817–824.
[25] ZHANG B, LI S. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry[J]. Ind Eng Chem Res, 1995, 34(4): 1383–1386.
[26] ZENG Q, LI K, FEN-CHONG T, et al. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes[J]. Appl Surface Sci, 2010, 257(3): 762–768.
[27] TANG M, LI J Q. Research on Fractal Characteristics of Cement-Based Materials by Nitrogen Adsorption Method[J]. Adv Mater Res, 2011, 415-417(2):1545–1552.
[28] WINSLOW D, BUKOWSKI J M, YOUNG J F. The fractal arrangement of hydrated cement paste[J]. Cem Concr Res, 1995, 25(1): 147–156.
[29] HEINEMANN A, HERMANN, HÄUSSLER F. SANS analysis of fractal microstructures in hydrating cement paste[J]. Phys B Phys Condensed Matter, 2000, 276–278(1-3): 892–893.
[30] BLINC R, LAHAJNAR G, ZUMER S, et al. NMR study of the time evolution of the fractal geometry of cement gels[J]. Phys Rev B: Condensed Matter, 1988, 38(4): 2873–2875.
[31] WANG Y, DIAMOND S. A fractal study of the fracture surfaces of cement pastes and mortars using a stereoscopic SEM method[J]. Cem Concr Res, 2001, 31(10): 1385–1392.
[32] FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. J Colloid Interface Sci, 1987, 120(1): 263–271.
[33] NEIMARK A V. Calculating surface fractal dimensions of adsorbents[J]. Adsorp Sci Technol, 1990, 7(4): 210–219.
[34] USTERI M, BONNY J D, LEUENBERGER H. Fractal dimension of porous solid dosage forms[J]. Pharmaceutica Acta Helvetiae, 1990, 65(2): 55–61.
[35] ZHANG B, LIU W, LIU X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry[J]. Appl Surface Sci, 2006, 253(3): 1349–1355.
[36] LANGE D A, JENNINGS H M, SHAH S P. Image analysis techniques for characterization of pore structure of cement-based materials[J]. Cem Concr Res, 1994, 24(5): 841–853.
[37] LIVINGSTON R A. Fractal nucleation and growth model for the hydration of tricalcium silicate[J]. Cem Concr Res, 2000, 30(12): 1853–1860.
[38] Ma H. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application[J]. J Porous Mater, 2014, 21(2): 207–215.
[39] ALIGIZAKI K. Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements[M]. Abingdon: Taylor and Francis, 2006: 60–100.
[40] CUI L U, CAHYADI J H. Permeability and pore structure of OPC paste[J]. Cem Concr Res, 2001, 31(2): 277–282.
[41] LIU Z, WINSLOW D. Sub-distributions of pore size: a new approach to correlate pore structure with permeability[J]. Cem Concr Res, 1995, 25(4): 769–778.
[42] WANG Dehui, SHI Caijun, NIMA FAEZADNIA N, et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures[J]. Constr Build Mater, 2018, 181: 659–672.
[43] GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement-based materials[J]. J Mater Sci, 1992, 27(8): 2083–2092.
[44] KATZ A J, THOMPSIN A H. Quantitative prediction of permeability in porous rock[J]. Phys Rev B, 1986, 34(11): 8179–8181
[45] KATZ A J, THOMPSIN A H. Prediction of rock electrical conductivity from mercury injection measurements[J]. J Geophys Res Solid Earth, 1987, 92(B1): 599–607.
[46] EL-DIEB A S, HOOTON R D. Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from Mercury intrusion porosimetry data[J]. Cem Concr Res, 1994, 24(3): 443–455.
[47] COOK R A, HOVER K C. Mercury porosimetry of hardened cement pastes[J]. Cem Concr Res, 1999, 29(99): 933–943.
[48] DENN M M. Process fluid mechanics[M]. Upper Saddle River: Prentice Hall, 1980: 41–43.
[49] 张宇, 金祖权, 张云升. 不同方式养护高强水泥基材料孔表面积分形维数与孔结构的关系[J]. 硅酸盐学报, 2017, 45(2): 249–253.
ZHANG Yu, JIN Zuquan, ZHANG Yunsheng. J Chin Ceram Soc, 2017, 45(2): 249–253.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com