首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
引气剂对延缓高海拔强碱环境下碱-硅酸反应的影响
作者: 鹏1 余红发2  静3  颖3 臧亚美4 王卫东5 
单位:(1. 内蒙古科技大学土木工程学院土木工程系 内蒙古 包头 014010 2. 南京航空航天大学土木工程系 南京 210016  3. 中国科学院青海盐湖研究所 西宁 810008 4. 西藏大学资源与土木工程系 拉萨 850000  5. 甘肃鲲诚工程检测有限公司 兰州 730000) 
关键词:引气剂 碱-硅酸反应 长龄期 强碱环境 高海拔 延缓机理 
分类号:TU502
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 青藏高原盐渍土地区的碱金属离子含量很高,属于强碱环境,碱活性骨料分布广,极易引起混凝土发生碱-硅酸反应(ASR)。为确定引气剂延缓ASR的机理,设计了掺入矿物掺合料(SCM)的混凝土配比,并加入引气剂,研究了腐蚀溶液中的混凝土试件,包括1.5 a的强度发展和1 a的碱金属离子扩散浓度,并研究了砂浆棒试件210 d的膨胀率发展和龄期长达6 a的微观形貌。结果表明:相较于未使用引气剂的试件,掺量为0.05%的引气剂未引起混凝土试件(含气量5.4%)的强度损失,且有效降低了砂浆棒试件的膨胀率。此外,引气气孔成为了ASR产物的储仓,若混凝土碱量不变,则可控制碱活性骨料周边的ASR作用程度,延缓ASR胀裂的速率,有效改善SCM对ASR的抑制作用。

 The saline soil areas of Qinghai-Tibet Plateau, China, are in a strong alkali environment due to the high contents of alkali metal ions, which can easily cause the alkali-silica reaction (ASR) in concrete. To investigate the mechanism of the air-entraining agent in mitigating the ASR, a mix of concrete blended with supplementary cementitious materials (SCM) in the presence of air-entraining agent was designed. The strength development during 1.5 a and the diffusion concentration of alkali metal ions at 1 a of the concrete specimens in corrosive solution were analyzed. The expansion development of the mortar-bar specimens for 210 d and their microscopic morphology at 6 a were investigated. The results show that the air-entraining agent at 0.05% dosage does not cause the strength loss of concrete specimens (when gas content is 5.4%) and effectively reduce the expansions of mortar-bars specimens. In addition, the air-entraining pores become a reservoir of ASR products, controlling the extent of ASR around the alkali-active aggregates as the alkali of concrete is constant, delaying the cracking rate duo to ASR, and then improving the inhibitory effect of SCM on ASR.

基金项目:
作者简介:
参考文献:

 [1] DU L X, FOLLIARD J K. Mechanisms of air entrainment in concrete[J]. Cem Concr Res, 2005, 35(8): 1463–1471.

[2] AMIN ZIAEI-NIA, GHOLAM-REZA TADAYONFAR, HAMID ESKANDARI-NADDAF. Effect of air entraining admixture on concrete under temperature changes in freeze and thaw cycles[J]. Mater Today-Proceedings, 2018, 5(21): 6208–6216.
[3] GIEDRIUS GIRSKAS, GINTAUTAS SKRIPKIUNAS. The effect of synthetic zeolite on hardened cement paste microstructure and freeze-thaw durability of concrete[J]. Constr Build Mater, 2017, 142: 117–127.
[4] 马红娜. 冻融循环和ASR协同作用下纤维混凝土损伤效应与抑制措施研究[D]. 杨陵: 西北农林科技大学, 2010.
MA Hongna. Research on damage effect and control measures of fiber reinforced concrete under synergy of asr and freeze-thaw cycle (in Chinese, dissertation). Yangling: Northwest Agriculture and Forestry University, 2010.
[5] PENG ZHANG, FOLKER H. WITTMANN, MICHAEL VOGEL, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cem Concr Res, 2017, 100: 60–67.
[6] FARIS MATALKAH, PARVIZ SOROUSHIAN. Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement[J]. Constr Build Mater, 2018, 163: 200–213.
[7] 邓敏, 唐明述. 碱含量、湿度、引气剂和碱-集料反应[J]. 混凝土与水泥制品, 1992(3): 14–16.
DENG Min, TANG Mingshu. China Concr Cem Prod (in Chinese), 1992(3): 14–16.
[8] FUYUAN GONG, YUYA TAKAHASHI, KOICHI MAEKAWA. Strong coupling of freeze-thaw cycles and alkali silica reaction - multi-scale poro-mechanical approach to concrete damages[J]. J Adv Concr Technol, 2017, 15(7): 346–367.
[9] 周述光, 何廷树. 矿物掺合料和外加剂复合使用抑制ASR的效果研究[J]. 西安建筑科技大学学报(自然科学版), 2010(1): 137–141.
ZHOU Shuguang, HE Tingshu. J Xi’an Univ Arch Technol (Nat Sci Ed)(in Chinese), 2010(1): 137–141.
[10] NABIL M. AL-AKHRAS. Performance of olive waste ash concrete exposed to alkali-silica reaction[J]. Struct Concr, 2012, 13(4): 221–226.
[11] YAN SHI, HUAQUAN YANG, SHIHUA ZHOU, et al. Effect of atmospheric pressure on performance of aea and air entraining concrete[J]. Adv Mater Sci Eng, 2018//doi: 10.1155/2018/6528412.
[12] 李雪峰, 付智. 低气压环境对混凝土含气量及气泡稳定性的影响[J]. 硅酸盐学报, 2015(8): 1076–1082.
LI Xuefeng, Fu Zhi. J Chin Ceram Soc, 2015(8): 1076–1082.
[13] 朱长华. 青藏高原多年冻土区高性能混凝土的试验研究[D]. 北京: 铁道部科学研究院, 2004.
ZHU Zhanghua. Research on high performance concrete in Qinghai-Tibet Plateau Permafrost Regions (QT-HCP)(in Chinese, dissertation). Beijing: Ministry of Railway Research Institute, 2004.
[14] 唐明述. 关于碱-集料反应的几个理论问题[J]. 硅酸盐学报, 1990(4): 365–373.
Tang Mingshu. J Chin Ceram Soc, 1990(4): 365–373.
[15] 卢都友, 许仲梓, 吕忆农, 等. 碱硅酸反应(ASR)抑制措施研究评 述[J]. 混凝土与水泥制品, 1999(2): 14–18.
LU Douyou, XU Zhongzi, LU Yinong, et al. China Concr Cem Prod(in Chinese), 1999(2): 14–18.
[16] SEYON KANDASAMY, MEDHAT H. SHEHATA. The capacity of ternary blends containing slag and high-calcium fly ash to mitigate alkali silica reaction[J]. Cem Concr Compos, 2014, 49: 92–99.
[17] MICHAEL THOMAS. The effect of supplementary cementing materials on alkali-silica reaction: A review[J]. Cem Concr Res, 2011, 41(12SI): 1224–1231.
[18] 高鹏, 余红发, 李颖, 等. 砂浆棒快速法Li2CO3与硝酸盐抑制ASR长龄期效果[J]. 建筑材料学报, 2018, 21(1): 1–7.
GAO Peng, YU Hongfa, LI Ying, et al. J Build Mater (in Chinese), 2018, 21(1): 1–7.
[19] 薛庆. 引气剂与混凝土高性能化[J]. 混凝土, 2005(4): 22–25.
XUE Qing. Concrete (in Chinese), 2005(4): 22–25.
[20] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004.
YU Hongfa. Study on high performance concrete in salt lake: durability, mechanism and service life prediction (in Chinese, dissertation). Nanjing: Southeast University, 2004.
[21] 中国工程建设标准化协会. CECS 53-1993混凝土碱含量限值标  准[S]. 中国: 中国计划出版社, 1993.
China Association for Engineering Construction Standardization. CECS 53-1993 Standard for Maximum Alkali Content in Concrete (in Chinese)1993.
[22] 孙景卫. 铝盐对ASR的阻止作用及机理研究[D]. 唐山: 河北理工大学, 2008.
SUN Jingwei. Effect of salt containing al on inhibiting ASR (in Chinese, dissertation). Tangshan: Institutes of Technology of Hebei, 2008.
[23] 卢都友, 许仲梓, 唐明述. 不同结构构造硅质集料的碱硅酸反应模型[J]. 硅酸盐学报, 2002(2): 149–154.
LU Douyou, XU Zhongzi, TANG Mingshu. J Chin Ceram Soc, 2002(2): 149–154.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com