首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
3D打印水泥净浆层间拉伸强度及层间剪切强度
作者:刘致远 王振地     
单位:(中国建筑材料科学研究总院 绿色建筑材料国家重点实验室 北京 100024) 
关键词:十字交叉法 3D打印 层间结合强度 拉伸强度 剪切强度 
分类号:TU503+.6
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 为研究打印时间间隔以及纤维掺量对3D打印水泥基材料层间结合强度的影响,采用陶瓷领域的十字交叉法测试了3D打印水泥净浆层间拉伸强度及层间剪切强度,分析了层间结合强度随打印时间间隔变化的原因。结果表明:十字交叉法可很好地测试3D打印水泥基材料层间结合强度,且不存在直接拉伸法所具有的受力偏心问题;层间结合强度在净浆终凝前后有显著差异,终凝前,层间结合强度随着打印时间间隔的增加而明显降低;终凝后,层间拉伸强度不随打印时间间隔的改变而改变,层间剪切强度则随着打印时间间隔的增加而增大;由于纤维沿打印方向定向分布,掺入纤维未能提高3D打印水泥净浆的层间结合强度。

 To investigate the influences of printing time interval and fiber dosage on the interlayer bond strength of 3D printing cement-based materials, the tensile bond strength and shear bond strength were measured by a cross-bonded method. The change of interlayer bond strength with time interval was analyzed. The results show that the cross-bonded method can effectively measure the tensile bond strength and shear bond strength of 3D printing cement-based materials and eliminate the disadvantage of eccentricity in direct tension test. The interlayer bond strengths before and after the final setting are different. Before the final setting, the bond strength of the 3D printing cement paste decreases with the increase of time interval. After the final setting, the tensile bond strength does not change, while the shear bond strength increases with the increase of time interval. The interlayer bond strength of 3D printing cement paste cannot be improved via adding fibers.

基金项目:
作者简介:
参考文献:

 [1] KHOSHNEVIS B, DUTTON R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials[J]. Mater Technol, 1998, 13(2): 53–56.

[2] KHOSHNEVIS B, BEKEY G. Automated Construction Using Contour Crafting--Applications on Earth and Beyond[J]. Nist Special Publication Sp, 2003: 489–494.
[3] LIM S, LE T, WEBSTER J, et al. Fabricating construction components using layered manufacturing technology[C]//Global Innovation in Construction Conference, 2009: 512–520.
[4] DINI E. Method for automatically producing a conglomerate structure and apparatus therefor[P]. U.S. Patent 8, 337, 736[P]. 2012-12-25.
[5] LORET E, SHAHAB A R, LINUS M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication[J]. Computer-Aided Design, 2015, 60: 40–49. 
[6] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cem Concr Res, 2012, 42(3): 558–566.
[7] PANDA B, PAUL S C, MOHAMED NAN, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108–116.
[8] 欧阳翔. 预拌砂浆粘结强度和抗压强度现场检测技术研究[D]. 华南理工大学, 2012.
OU Yangxiang. Research of the on-site detection technique for bond strength and compressive strength of ready-mixed mortar(in Chinese). South China University of Technology, 2012.
[9] ZAREIYAN B, KHOSHNEVIS B. Interlayer adhesion and strength of structures in Contour Crafting-Effects of aggregate size, extrusion rate, and layer thickness[J]. Autom Constr, 2017, 81: 112–121.
[10] ZAREIYAN B, KHOSHNEVIS B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete[J]. Autom Constr, 2017, 83: 212–221.
[11] ISO/DIS 13124, Fine ceramics (advanced ceramics, advanced technical ceramics) -Test method for interfacial bond strength of ceramic materials[S]. 2010.
[12] 李坤明, 包亦望, 万德田, 等. 压痕法和十字交叉法评价类金刚石硬质涂层的界面结合强度[J]. 硅酸盐学报, 2010, 38(1): 119–125.
LI Kunming, BAO Yiwang, WAN Detian, et al. J Chin Ceram Soc, 2010, 38(1): 119–125. 
[13] WALLEVIK O H, WALLEVIK J E. Rheology as a tool in concrete science: The use of rheographs and workability boxes[J]. Cem Concr Res, 2011, 41(12): 1279–1288. 
[14] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cem Concr Comp, 2017, 79: 62–70.and apparatus therefor[P]. U.S. Patent 8, 337, 736[P]. 2012-12-25.
[5] LORET E, SHAHAB A R, LINUS M, et al. Complex concrete structures: merging existing casting techniques with digital fabrication[J]. Computer-Aided Design, 2015, 60: 40–49. 
[6] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cem Concr Res, 2012, 42(3): 558–566.
[7] PANDA B, PAUL S C, MOHAMED NAN, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108–116.
[8] 欧阳翔. 预拌砂浆粘结强度和抗压强度现场检测技术研究[D]. 华南理工大学, 2012.
OU Yangxiang. Research of the on-site detection technique for bond strength and compressive strength of ready-mixed mortar(in Chinese). South China University of Technology, 2012.
[9] ZAREIYAN B, KHOSHNEVIS B. Interlayer adhesion and strength of structures in Contour Crafting-Effects of aggregate size, extrusion rate, and layer thickness[J]. Autom Constr, 2017, 81: 112–121.
[10] ZAREIYAN B, KHOSHNEVIS B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete[J]. Autom Constr, 2017, 83: 212–221.
[11] ISO/DIS 13124, Fine ceramics (advanced ceramics, advanced technical ceramics) -Test method for interfacial bond strength of ceramic materials[S]. 2010.
[12] 李坤明, 包亦望, 万德田, 等. 压痕法和十字交叉法评价类金刚石硬质涂层的界面结合强度[J]. 硅酸盐学报, 2010, 38(1): 119–125.
LI Kunming, BAO Yiwang, WAN Detian, et al. J Chin Ceram Soc, 2010, 38(1): 119–125. 
[13] WALLEVIK O H, WALLEVIK J E. Rheology as a tool in concrete science: The use of rheographs and workability boxes[J]. Cem Concr Res, 2011, 41(12): 1279–1288. 
[14] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cem Concr Comp, 2017, 79: 62–70.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com