首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MgFe2O4@PDA@PAMAM纳米复合材料对重金属离子的选择吸附性
作者:孙玉坤1 郭兴忠1 李冬云2  辉1 
单位:(1. 浙江大学材料科学与工程学院 杭州 310027 2. 中国计量大学材料科学与工程学院 杭州 310018) 
关键词:镁铁氧体 磁性能 纳米复合材料 吸附 
分类号:TB33;TB34
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 以快速冷却处理获得的MgFe2O4纳米颗粒为磁核,经多巴胺自聚合(PDA)修饰和聚酰胺-胺(PAMAM)大分子接枝,制备高磁性MgFe2O4@PDA@PAMAM纳米复合材料,考察了MgFe2O4@PDA@PAMAM纳米复合材料对中性水溶液中Cu(II)、Pb(II)、Cd(II)和Hg(II) 4种重金属的吸附性能。结果表明:通过快速冷却的处理方式改变MgFe2O4晶粒内的金属离子分布,可获得具有高饱和磁化强度的MgFe2O4纳米材料;所制备的MgFe2O4@PDA@PAMAM纳米复合材料对4种重金属离子具有高的吸附能力,其中对Cu(II)、Pb(II)、Cd(II)和Hg(II)的饱和吸附容量分别为108.32、179.54、50.24和39.6 mg/g,选择吸附性顺序从高到低依次为Pb(II)、Cu(II)、Cd(II)、Hg(II)。

 MgFe2O4@PDA@PAMAM nanocomposite with a high saturation magnetization was fabricated via polydopamine (PDA) modification and polyamidoamine (PAMAM) grafting with nanoparticles of magnesium ferrites prepared by rapid cooling as a magnetic core. The adsorption capacity of MgFe2O4@PDA@PAMAM nanocomposite for Cu(II), Pb(II), Cd(II) and Hg(II) in neutral aqueous solutions was investigated. The results show that this nanocomposite has a great adsorption property for the heavy metal ions, and the adsorption capacities are 108.32, 179.54, 50.24 and 39.6 mg/g for Cu(II), Pb(II), Cd(II) and Hg(II), respectively, indicating that the selective adsorption order of MgFe2O4@PDA@PAMAM from high to low could be Pb(II), Cu(II), Cd(II), Hg(II).

基金项目:
作者简介:
参考文献:

 [1] PAN B, GAO F, GU H. Dendrimer modified magnetite nanoparticles for protein immobilization[J]. J Colloid Interface Sci. 2005, 284(1): 1–6.

[2] SUN W, MIGNANI S, SHEN M, et al. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications[J]. Drug Discov Today, 2016, 21(12): 1873–1885.
[3] KURTAN U, BAYKAL A. Fabrication and characterization of Fe3O4@APTES@PAMAM-Ag highly active and recyclable magnetic nanocatalyst: Catalytic reduction of 4-nitrophenol[J]. Mater Res Bull, 2014, 60: 79–87.
[4] ZHAO L, CHI Y, YUAN Q, et al. Phosphotungstic acid anchored to amino–functionalized core–shell magnetic mesoporous silica microspheres: A magnetically recoverable nanocomposite with enhanced photocatalytic activity[J]. J Colloid Interface Sci, 2013, 390(1): 70–77.
[5] CHANDRA S, PATEL M D, LANG H, et al. Dendrimer- functionalized magnetic nanoparticles: A new electrode material for electrochemical energy storage devices[J]. J Power Sources, 2015, 280: 217–226.
[6] WANG L, HU D, KONG X, et al. Anionic polypeptide poly (γ-glutamic acid)-functionalized magnetic Fe3O4-GO- (o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions[J]. Chem Eng J, 2018, 346: 38–49.
[7] YI X, HE J, GUO Y, et al. Encapsulating Fe3O4into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions[J]. Ecotox Environ Safe, 2018, 147: 699–707.
[8] JIANG W, WU L, DUAN J, et al. Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers[J]. Biosens Bioelectron, 2018, 99: 660–666.
[9] BAHADIR E B, SEZGINTURK M K. Poly(amidoamine) (PAMAM): An emerging material for electrochemical bio(sensing) applications[J]. Talanta, 2016, 148: 427–438.
[10] QIE F, ZHANG G, HOU J, et al. Extracting genomic DNA of foodstuff by polyamidoamine (PAMAM)–magnetite nanoparticles[J]. Talanta, 2012, 93: 166–171.
[11] PARSIAN M, MUTLU P, YALCIN S, et al. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery[J]. Int J Pharmaceut, 2016, 515(1/2): 104–113.
[12] DANG G, SHI Y, FU Z, et al. Fe3O4@PS@PAMAM-Ag Magnetic Nanocatalysts and Their Recoverable Catalytic Ability[J]. Chin J Catal, 2012, 33(4/6): 651–658.
[13] MALEKI A, HAYATI B, NAJAFI F, et al. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2nanohybrid: Preparation, characterization and adsorption studies[J]. J Mol Liq, 2016, 224: 95–104.
[14] KAUR N, KAUR M. Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites[J]. Ceram Int, 2018, 44(4): 4158–4168.
[15] ZU Y, ZHAO Y, XU K, et al. Preparation and comparison of catalytic performance for nano MgFe2O4 , GO-loaded MgFe2O4 and GO-coated MgFe2O4 nanocomposites[J]. Ceram Int, 2016, 42(16): 18844–18850.
[16] MURUGESAN C, CHANDRASEKARAN G. Enhanced electrical and magnetic properties of annealed magnesium ferrite nanoparticles[J]. J Supercond Nov Magn, 2015, 28(12): 3607–3615.
[17] RASHAD M M. Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation[J]. J Mater Sci, 2007, 42(13): 5248–5255.
[18] OLADIPO A A, GAZI M. High boron removal by functionalized magnesium ferrite nanopowders[J]. Environ Chem Lett, 2016, 14(3): 373–379.
[19] SAMSONOV G V, LUKACH P. Evaluation of the effect of rare-earth ions on the properties of magnesium ferrite[J]. Soviet Powder Metall Metal Ceram, 1971, 10(11): 934–937.
[20] SUMANGALA T P, MAHENDER C, VENKATARAMANI N, et al. A study of nanosized magnesium ferrite particles with high magnetic moment[J]. J Magn Magn Mater, 2015, 382: 225–232.
[21] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426–430.
[22] WAN Q, LIU M, XIE Y, et al. Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application[J]. J Mater Sci, 2017, 52(1): 504–518.
[23] WAN X, ZHAN Y, LONG Z, et al. High-performance magnetic poly (arylene ether nitrile) nanocomposites: Co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550[J]. Appl Surf Sci, 2017, 425: 905–914.
[24] TRIPATHI B P, DAS P, SIMON F, et al. Ultralow fouling membranes by surface modification with functional polydopamine[J]. Eur Polym J, 2018, 99: 80–89.
[25] LI D, SUN Y, GAO P, et al. Structural and magnetic properties of nickel ferrite nanoparticles synthesized via a template-assisted sol–gel method[J]. Ceram Int, 2014, 40(10, Part B): 16529–16534.
[26] LIU C, LI M, CUI Z, et al. Comparative study of magnesium ferrite nanocrystallites prepared by sol–gel and coprecipitation methods[J]. J Mater Sci. 2007, 42(15): 6133–6138.
[27] WAN Y, LIU X, LIU P, et al. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: Kinetic, equilibrium and adsorption mechanism studies[J]. Sci Total Environ, 2018, 639: 428–437.
[28] XU X, ZHENG Q, BAI G, et al. Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode- driven metabolism of steroid hormones[J]. Biosens, Bioelectron, 2018, 119: 182–190.
[29] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. J Membrane Sci, 2016, 506: 60–70.
[30] POPESCU L M, PITICESCU R M, STOICIU M, et al. Investigation of thermal behaviour of hybrid nanostructures based on Fe2O3 and PAMAM dendrimers[J]. J Therm Anal Calorim, 2012, 110(1): 357–362.
[31] MULIWA A M, LESWIFI T Y, ONYANGO M S, et al. Magnetic adsorption separation (MAS) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe3O4 nanocomposites[J]. Sep Purif Technol, 2016, 158: 250–258.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com