首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
激光烧结原位合成莫来石涂层及其性能
作者: 杰1 李喜宝1 冯志军1 侯喜锋2 黄军同1 
单位:(1. 南昌航空大学材料科学与工程学院 南昌 330063  2. 天津博雅大地新材料科技有限公司 天津 300382) 
关键词:莫来石 涂层 激光烧结 原位合成 
分类号:TB35
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 为了防止石墨的氧化,在不添加任何粘结剂的情况下,通过激光烧结金属铝和二氧化硅粉,在石墨基片上原位制备出莫来石抗氧化涂层。对莫来石和SiO2涂层的相组成、显微组织、Vickers硬度和抗氧化性能进行了研究。结果表明:涂层中主要生成了莫来石及少量氧化铝和二氧化硅;在石墨表面形成致密且无裂纹的莫来石涂层;柱状莫来石晶体镶嵌在氧化硅玻璃相中,增强了涂层与基体之间的粘附性;莫来石涂层的Vickers硬度达到910 HV0.5。该涂层材料在长时间高温下显示出优异的抗氧化性能。激光烧结合成莫来石的主要反应机理为铝和二氧化硅的液相反应。

 A mullite anti-oxidation coating was prepared in-situ on graphite substrate by laser-sintering aluminum and silica powders without any binder to prevent the oxidation of graphite. The phase composition, microstructure, the Vickers hardness and oxidation resistance of the prepared coating were investigated. The results reveal that mullite phase with a small amount of alumina and silica is mainly formed in the coating. A dense and crack free mullite coating is formed on the surface of graphite. Some columnar mullite crystals are embedded in silica glass phase, thus enhancing the adhesion between the coating and the substrate. The Vickers hardness of the coating reaches 910 HV0.5. The mullite coating has the excellent oxidation resistance at a high temperature for a long time. The main reaction mechanism of mullite synthesized by laser-sintering is liquid phase reaction of aluminum and silica.

基金项目:
作者简介:
参考文献:

 [1] JIN X, FAN X, LU C, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. J Eur Ceram Soc, 2018, 38(1): 1–28.

[2] LI L, LI H, LI Y, et al. A SiC-ZrB2-ZrC coating toughened by electrophoretically-deposited SiC nanowires to protect C/C composites against thermal shock and oxidation[J]. Appl Surf Sci, 2015, 349: 465–471.
[3] WANG T, LUO R. Dynamic oxidation and protection of the PAN pre-oxidized fiber C/C composites[J]. Ceram Int, 2018, 44: 6311–6320.
[4] DU B, HONG C, QU Q, et al. Oxidative protection of a carbon-bonded carbon fiber composite with double-layer coating of MoSi2-SiC whisker and TaSi2-MoSi2-SiC whisker by slurry method[J]. Ceram Int, 2017, 43(12): 9531–9537.
[5] QIANG X, LI H, ZHANG Y, et al. Mechanical and oxidation protective properties of SiC nanowires-toughened SiC coating prepared in-situ by a CVD process on C/C composites[J]. Surf Coat Tech, 2016, 307: 91–98.
[6] LI S, ZHAO X, AN Y, et al. Effect of deposition temperature on the mechanical, corrosive and tribological properties of mullite coatings[J]. Ceram Int, 2018, 44: 6719–6729.
[7] HOU G, AN Y, ZHAO X, et al. Effect of critical plasma spraying parameter on microstructure and wear behavior of mullite coatings[J]. Tribol Int, 2016, 94: 138–145.
[8] LI S, ZHAO X, AN Y, et al. Thermal conductivity of plasma sprayed forsterite/mullite coatings[J]. Ceram Int, 2014, 40: 13995–13999.
[9] YANG Y, WANG P, TSAI Y, et al. Influences of feedstock and plasma spraying parameters on the fabrication of tubular solid oxide fuel cell anodes[J]. Ceram Int, 2018, 44: 7824–7830.
[10] WU Y, LIAO W, WANGI F, et al. Effect of electron beam remelting treatments on the performances of plasma sprayed zirconia coatings[J]. J Alloy Compd, 2018, 756: 33–39.
[11] DANEZAN A, DELAIZIR G, TESSIER-DOYEN N, et al. Selective laser sintering of porcelain[J]. J Eur Ceram Soc, 2018, 38: 769–775.
[12] SOFIA D, CHIRONE R, LETTIERI P, et al. Selective laser sintering of ceramic powders with bimodal particle size distribution[J]. Chem Eng Res Des, 2018, 136: 536–547.
[13] HU Z, CHEN F, XU J, et al. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties[J]. Compos Part B-Eng, 2018, 134: 133–140.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com