首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
常压水解法制备二氧化钛/碳纳米管复合材料及其电催化性能
作者:李玉儒1 吴世照1 刘静袆1  静1 2 李国华1 2 
单位:(1. 浙江工业大学化学工程学院 杭州 310014 2. 浙江工业大学 绿色化学合成技术国家重点实验室培训基地 杭州 310032) 
关键词:二氧化钛 碳纳米管 纳米复合材料 电催化活性 协同效应 
分类号:TU528
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 以多壁碳纳米管(MWCNT)为载体,四氯化钛为前驱体,经常压水解获得了TiO2/MWCNT纳米复合材料,对纳米复合材料的晶相组成、形貌和微结构等进行了表征,测试了在酸、中、碱3种体系下复合材料对甲醇的电催化氧化性能。结果表明:复合材料的晶相由锐钛矿、金红石和MWCNT组成,锐钛矿和金红石均匀地分布于MWCNT的外表面,且复合材料中锐钛矿和金红石的含量和分布与制备过程中钛与碳的摩尔比有关;TiO2与MWCNT复合后,复合材料对甲醇的电催化氧化性能显著提高,且其性能与TiO2在MWCNT外表面的含量和分布密切相关。

 A nanocomposite with TiO2 and multiwall carbon nanotube (MWCNT) was prepared via atmospheric hydrolysis with nitrified MWCNTs as a support and titanium tetrachloride as a precursor. The crystal phase, morphology and microstructure of TiO2@MWCNT nanocomposite were characterized. The electrocatalytical activities of the nanocomposite for methanol oxidation in acidic, neutral and alkaline aqueous solutions were investigated. The results show that the crystal phase of the samples is composed of anatase (A), rutile (R) and MWCNT, TiO2 nanoparticles distribute on the outer surface of MWCNT, and the contents of A and R on the surface of the nanocomposites are relevant to the ratio of titanium to carbon during preparation. It is also indicated that the photocatalytic activity of TiO2 could be improved after composited with MWCNT. This improvement is due to the distribution of TiO2 nanoparticles on the outer surfaces of MWCNT and the contents of A and R in TiO2 nanoparticles.

基金项目:
作者简介:
参考文献:

 [1] BOZZI A, YURANOVA T, KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. J Photochem Photobiol A, 2005, 172(1): 27–34.

[2] WOAN K, PYRGIOTAKIS G, SIGMUND W. Photocatalytic Carbon-Nanotube-TiO2 Composites[J]. Adv Mater, 2009, 21(21): 2233–2239.
[3] ZHU Z P, ZHOU Y, YU H W, et al. Photodegradation of humic substances on MWCNT nanotubular-TiO2 composites[J]. Chem Lett, 2006, 35(8): 890–891.
[4] HE D M, YANG L X, KUANG S Y, et al. Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation[J]. Electrochem Commun, 2007, 9(10): 2467–2472.
[5] BAUGHMAN R H, ZAKHIDOV A A, HEER W A. Carbon nanotubes the route toward applications[J]. Science, 2002, 297(5582): 787–792. 
[6] AJAYAN P M. Nanotubes from Carbon[J]. Chem Res, 1999, 99(7): 1787–1800. 
[7] HU J T, ODOM T W, LIEBER C M. Chemistry and physics in one-dimension: Synthesis and properties of nanowires and nanotubes[J]. Acc Chem Res, 1999, 32(5): 435–445. 
[8] FRANK S, PONCHARAL P, WANG Z L, et al. Carbon nanotube quantum resistors[J]. Science, 1998, 280(5730): 1744–1746.
[9] CHEN J, LIU Y, MINETT A I, et al. Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery[J]. Chem Mater, 2007, 19(15): 3595–3597.
[10] MA X C, CAI Y H, LUN N, et al. Microstructural features of Co-filled carbon nanotubes[J]. Mater Lett, 2003, 57(19): 2879–2884.
[11] DAS D, NANDA K K. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting[J]. Nano Energy, 2016: 30: 303–311.
[12] GUI M M, CHAI S P, XU B Q, et al. Enhanced visible light responsive MWCNT/TiO2 core-shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane[J]. Solar Energy Mater Solar Cells, 2014, 122: 183–189.
[13] TETTEY K E, YEE M Q, LEE D. Photocatalytic and Conductive MWCNT/TiO2 nanocomposite thin films[J]. ACS Appl Mater Interfaces, 2010, 2(9): 2646–2652.
[14] REDDY N R, KUMARI M M, CHERALATHAN K K, et al. Enhanced photocatalytic hydrogen production activity of noble metal free MWCNT-TiO2 nanocomposites[J]. Int J Hydrogen Energy, 2018, 43(8): 4036–4043.
[15] ENIKO B, GÁBOR K, TAMÁS G, et al. Novel synthesis approaches for WO3-TiO2/MWCNT composite photocatalysts- problematic issues of photoactivity enhancement factors[J]. Catal Today, 2018, 300(1): 28–38. 
[16] LIU B, ZENG H C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2[J]. Chem Mater, 2008, 20(8): 2711–2718.
[17] AHMMAD B, KUSUMOTO Y, SOMEKAWA S, et al. Carbon nanotubes synergistically enhance photocatalytic activity of TiO2[J]. Catal Commun, 2008, 9(6): 1410–1413.
[18] XIA B Y, DING S J, WU H B. Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells[J]. RSC Adv, 2012, 2(3), 792–796.
[19] WANG X Y, ZHANG J C, ZHU H. Pt-Au/CNT@TiO2 as a high-performance anode catalyst for direct methanol fuel cells[J]. Chin J Catal, 2011, 32(1/2): 74–79.
[20] CHEN L, ZHANG B L, QU M Z, et al. Preparation and characterization of CNTs-TiO2 composites[J]. Powder Technol, 2005, 154(1): 70–72.
[21] ZHAO L, HAN M, LIAN J S. Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition[J]. Thin Solid Films, 2008, 516(10): 3394–3398.
[22] RAMASAMY M, JOHN B. Methanol oxidation in acid on ordered Ni/Ti[J]. J Mater Chem, 1992, 2(8): 875–887.
[23] JIANG S J. Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance[J]. J Power Sources, 2010, 195: 7578–7582.
[24] YAO Y L, ZHANG D, XIA X H. Study on Deposition mechanism of Pt nanoparticles on carbon nanotube[J]. Chin J Inorg Chem, 2004, 20(5): 531–535.
[25] FRELINK T. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol[J]. J Electroanal Chem, 1995, 382(1/2): 65–72.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com