首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Ca、Ag掺杂对TiO2涂层结构、体外矿化和抗菌性能的影响
作者: 晨1 杨明刚2  健1 赵晓兵1 王国成2 
单位:(1. 常州大学材料科学与工程学院 江苏 常州 213164 2. 中国科学院深圳先进技术研究院 广东 深圳 518055) 
关键词:等离子喷涂 氧化钛 氟化钙 氧化银 体外矿化 抗菌性能 
分类号:R318
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 利用等离子喷涂技术在医用Ti合金表面制备了TiO2、CaF2-TiO2和Ag2O-CaF2-TiO2涂层。对涂层的微观结构进行表征,并对涂层表面粗糙度、接触角和耐腐蚀性进行测试。通过离子释放实验考察复合涂层中Ca2+、F–和Ag+的释放特性。利用Ca、P比为常规模拟体液2倍的溶液(2SBF)中浸泡实验评价复合涂层的体外矿化能力。利用金黄色葡萄球菌和大肠杆菌来评价涂层的抗菌性能。结果表明:等离子喷涂TiO2涂层主要由金红石和少量锐钛矿相组成,而在CaF2-TiO2和Ag2O-CaF2-TiO2涂层中均出现了Ca2Ti2O6固溶体;TiO2涂层的表面粗糙度随着CaF2和Ag2O的加入而变大,其亲水性也得到改善。CaF2和Ag2O的掺杂显著提高了TiO2涂层的耐腐蚀性;3种涂层均具有诱导磷灰石生成的能力,展现了良好的体外生物矿化能力。Ag掺杂极大提高了Ag2O-CaF2-TiO2涂层的抗菌性能。

 TiO2, CaF2-TiO2 and Ag2O-CaF2-TiO2 coatings were deposited on the surface of Ti alloy via plasma spraying. The microstructures of the coatings were characterized. The surface roughness, contact angle and corrosion resistance of the coatings were measured. The releases of Ca2+, F– and Ag+ ions of the coatings were investigated by ion release experiment. The in-vitro mineralization abilities of the coatings were analyzed by simulated body fluid (SBF) immersion tests. The antibacterial properties of the composite coating were evaluated using S. aureus and E. coli. The results show that TiO2 coating is composed of rutile and a small amount of anatase, and Ca2Ti2O6 solid solution occurs in CaF2-TiO2 and Ag2O-CaF2-TiO2 coatings. The surface roughness of the coatings increases due to the dopant of CaF2 and Ag2O, thus improving the hydrophilicities. The incorporation of CaF2 and Ag2O can enhance the corrosion resistance of TiO2 coating. After soaked in 2SBF solution (as the concentration of Ca and P is twice greater than that of SBF, and the content of other elements is unchanged), the coatings can induce apatite to form on the surface, having the superior in-vitro biomineralization abilities. The doping of Ag greatly improves the antibacterial properties of Ag2O-CaF2-TiO2 coating.

基金项目:
作者简介:
参考文献:

 [1] JAFFIN R A, BERMAN C L. The excessive loss of Branemark fixtures in type IV bone: A 5-year analysis[J]. J Periodontol, 1991, 62(1): 2–4.

[2] ZHANG E, LI F, WANG H, et al. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater Sci Eng C, 2013, 33(7): 4280–4287.
[3] LIU X Y, DING C X. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys[J]. Biomaterials, 2002, 23(20): 4065–4077.
[4] HE X, ZHANG G, WANG X, et al. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium[J]. Ceram Int, 2017, 43(18): 235–238.
[5] ZHANG X, WANG H, LI J, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceram Int, 2016, 42(15): 17095–17100.
[6] BURNAT B, ROBAK J, LENIART A, et al. The effect of concentration and source of calcium ions on anticorrosion properties of Ca-doped TiO2 bioactive sol-gel coatings[J]. Ceram Int, 2017, 43(5): 13735–13742.
[7] CHEN H J, WANG C L, YANG X, et al. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation[J]. Mater Sci Eng C, 2017, 70: 1047–1056.
[8] YAN Y, ZHANG X, HUANG Y, et al. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium[J]. Appl Surf Sci, 2014, 314: 348–357.
[9] WU H B, ZHANG X Y, GENG Z H, et al. Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Appl Surf Sci, 2014, 308: 43–49.
[10] TIAN P, HU H J, WANG H, et al. TiO2/CaF2 composite coating on titanium for biomedical application[J]. Mater Lett, 2014, 117: 98–100.
[11] CHEN Y, GAO A, BAI L, et al. Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles[J]. Mater Sci Eng: C, 2017, 75: 1049–1058.
[12] YANG L, PEREZ-AMODIO S, EVERTS V, et al. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts[J]. Biomaterials, 2010, 31(11): 2976–2989.
[13] SUN L, CHOW L C. Preparation and properties of nano-sized calcium fluoride for dental applications[J]. Dent Mater, 2008, 24(1): 111–116.
[14] OVERGAARD S, LIND M, GLERUP H, et al. Hydroxyapatite and fluorapatitecoatings for fixation of weight loaded implants[J]. Clin Orthop Relat Res, 1997, 336, 286–296.
[15] LI Z, HUANG B, MAI S, et al. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells[J]. Sci Technol Adv Mater, 2015, 16(3): 1019–1020.
[16] TIAN P, HU H J, WANG H. TiO2/CaF2 composite coating on titanium for biomedical application[J]. Mater Lett, 2014, 117: 98–100.
[17] MUKHOPADHYAY A, BASAK S, DAS J K, et al. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition[J]. ACS Appl Mater Intl, 2010, 2(9): 2540–2546.
[18] 卢志华,孙康宁. 载银羟基磷灰石的制备与表征[J]. 稀有金属材料与工程, 2009, 38(S1): 56–60.
LU Zhihua, SUN Kangning. Rare Met Mater Eng(in Chinese), 2009, 38(S1): 56–60.
[19] JAISWAL S, MCHALE P, DUFFY B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces[J]. Colloids Surf B: Biointerfaces, 2012, 94: 99–104.
[20] LI B E, LIU X Y, MENG F H, et al. Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings[J]. Mater Chem Phys, 2009, 118(1): 99–104.
[21] KELLY P J, LI H, WHITEHEAD K A, et al. A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings[J]. Surf Coat Tech, 2009, 204(6-7): 1137–1140.
[22] MUNGKALASIRI J, BEDEL L, EMIEUX F, et al. DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization[J]. Surf Coat Tech, 2009, 204(6): 887–892.
[23] KUMARI R, MAJUMDAR J D. Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate[J]. Mater Charact, 2017, 131(5): 12–20.
[24] 何涛, 徐可为, 憨勇. 等离子喷涂-水热处理制备二氧化钛-羟基磷灰石复合涂层[J]. 硅酸盐学报, 2003, 31(1): 95-98.
HE Tao, XU Kewei, HAN Yong. J Chin Ceram Soc, 2003, 31(1): 95–98.
[25] RAMPERSAD S N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays[J]. Sensors, 2012, 12(9): 12347–12360.
[26] YANG G J, LI C J, HAN F, et al. Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings[J]. Thin Solid Films, 2004, 466(1/2): 81–85.
[27] TOKI S M O. Fabrication and properties of TiO2 photo-catalytic coatings by thermal spraying with TiO2-Al agglomerated powder[J]. J High Temp Soc, 2001, 27(4): 274–279.
[28] PING L, LU X H. Progress in Research on Effects of Metal Ion Dopants on Crystal Phase Transformation of TiO2[J]. Mater Rev, 2006, 20(9): 13–16.
[29] LI Y P, XU X W, WANG B, et al. Research on the Fluxed Effect of LiF and B2O3[J]. J Univ Sci Technol Beijing, 2002, 24(4): 429–431.
[30] GAO X, JIANG L. Biophysics: Water-repellant legs of water striders[J]. Nature, 2004, 432(7013): 36.
[31] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1–8.
[32] LI G S, JIN M F, WEI G, et al. On wettability of binding phase in fluorine-bearing sinter[J]. Iron Steel, 2007, 42(8): 12–16.
[33] NIE X, LEYLAND A, MATTHEWS A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J]. Surf  Coat Tech, 2000, 125(1): 407–414.
[34] ZAVERI N, MAHAPATRA M, DECEUSTER A, et al. Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids[J]. Electrochim Acta, 2008, 53(15): 5022–5032.
[35] LI J X, YANG D Z, SHI F, et al. Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement[J]. Thin Solid Films, 2003, 429(1-2): 225–230.
[36] 莫尊理, 胡惹惹, 王雅雯, 等. 抗菌材料及其抗菌机理[J]. 材料导报A: 综述篇, 2014, 28(1): 50-52.
MO Zunli, HU Rere, WANG Yawen, et al. Mater Rev(in Chinese), 2014, 28(1): 50–52.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com