首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
混合碱效应对Ti4+掺杂硼酸盐玻璃发光性能的影响
作者:胡清柳 张汝楠 赖志强 卢小送 张印东 楚玉石 高志刚 杨兴华   
单位:(哈尔滨工程大学 纤维集成光学教育部重点实验室 哈尔滨 150001) 
关键词:混合碱效应 硼酸盐玻璃 玻璃结构 钛离子 无稀土荧光材料 
分类号:TU528
出版年,卷(期):页码:2019,47(5):0-0
DOI:
摘要:

 以低熔点硼酸盐玻璃为基质玻璃,通过改变玻璃中混合碱金属的种类及配比,研究了在紫外光激发下,Li-Na、Li-K和Li-Cs混合碱效应对过渡金属离子Ti4+发光性能,如荧光强度和寿命的影响。结果表明:混合碱效应会显著增强Ti4+离子峰值位于可见光波长处的发光强度,且这种增强效应与混合碱金属离子半径差有关。从玻璃网络结构随混合碱组成变化的角度阐释了玻璃结构对发光性能的影响。

 A series of Ti4+ doped mixed alkali (Li-Na, Li-K and Li-Cs) borate glasses were prepared, and their photoluminescent (PL) properties (i.e., emission intensity and decay spectra) were investigated. Under the UV light excitation, an intense and broad emission band in the visible light region appears. The PL properties are strongly dependent on the mixed alkali type. The greater dissimilarity in the ionic radius between the two kinds of alkali ions is, the more intense the emission intensity of Ti4+will be. In addition, the enhancement of the emission induced by the mixed alkali effect (MAE) was also discussed in terms of the compositional dependence of the glass structure upon the MAE.

基金项目:
作者简介:
参考文献:

 [1] LI G G, ZHANG X, LIN J, et al. Cyan-emitting Ti4+-and Mn2+-coactivated Mg2SnO4 as a potential phosphor to enlarge the color gamut for field emission display[J]. J Mater Chem, 2011, 21: 6477–6479.

[2] YU Y, LIU Z J, DAI N L, et al. Ce-Tb-Mn co-doped white light emitting glasses suitable for long-wavelength UV excitation[J]. Opt Express, 2011, 19: 19 473–19479.
[3] HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4: Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes[J]. J Phys Chem C, 2011, 115: 2349–2355.
[4] GUO N, HUANG Y J, YANG M, et al. A tunable single-component warm white-light Sr3Y(PO4)3: Eu2+, Mn2+ phosphor for white-light emitting diodes[J]. Phys Chem Chem Phys, 2011, 13: 15077–15082.
[5] LUO Q, QIAO X S, FAN X P, et al. Luminescence properties of Eu2+ and Mn2+ codoped 50SiO2-17Al2O3-23MgF2-10NaF glasses and glass-ceramics[J]. J Am Ceram Soc, 2011, 94(6): 1670–1674.
[6] EICHELBAUM M, RADEMANN K. Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices[J]. Adv Funct Mater, 2009, 19(13): 2045–2052.
[7] GUO H, LI J, LI F. Origin of white luminescence in Ag-Eu co-doped oxyfluoride glasses[J]. J Electrochem Soc, 2011, 158(6): 165.
[8] GUO H, LI F, WEI R, et al. Elaboration and luminescent properties of Eu/Tb co-doped GdPO4-based glass ceramics for white LEDs[J]. J Am Ceram Soc, 2012, 95(4): 1178–1181.
[9] GUO H, WEI R F, LIU X Y. Tunable white luminescence and energy transfer in (Cu+)2, Eu3+ codoped sodium silicate glasses[J]. Opt Lett, 2012, 37(10): 1670–1672.
[10] MASAI H, FUJIWARA T, MATSUMOTO S, et al. High efficient white light emission of rare earth-free MnO-SnO-ZnO-P2O5 glass[J]. J Ceram Soc Jpn, 2011, 119(10): 726–730.
[11] MASAI H, FUJIWARA T, MATSUMOTO S, et al. White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation[J]. Opt Lett, 2011, 36(15): 2868–2870.
[12] GUO H, WEI R F, WEI Y L, et al. Sb3+/Mn2+ co-doped tunable white emitting borosilicate glasses for LEDs[J]. Opt Lett, 2012, 37(20): 15.
[13] LIU X Y, GUO H, LIU Y, et al. Thermal quenching and energy transfer in novel Bi3+/Mn2+ co-doped white-emitting borosilicate glasses for UV LEDs[J]. J Mater Chem C, 2016, 4: 2506–2512.
[14] MENG X G, TANAKA K. Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass[J]. Appl Phys Lett, 2007, 90(5): 47.
[15] KIM M, CORKHILL CL, HYATT, et al. Development, characterization and dissolution behavior of calcium aluminoborate glass wasteforms to immobilize rare-earth oxides[J]. Sci Rep, 2018, 8: 5320.
[16] JANUCHTA K, YOUNGMAN R E, GOEL A, et al. Discovery of Ultra-Crack-Resistant oxide glasses with adaptive networks[J]. Chem Mater, 2017, 29: 5865–5876. 
[17] EL-RASHIDY A A, ROETHER J A, HARHAUS L, et al. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models[J]. Acta Biomater, 2017, 62: 1–28.
[18] ZANG X M, LI D S, PUN E Y B, et al. Dy3+ doped borate glasses for laser illumination[J]. Opt Mater Express, 2017, 7: 2040–2054. 
[19] GOU J, FAN J Y, ZUO S N, et al. Highly thermally stable and emission color tunable borate glass for white-light-emitting diodes with zero organic resin[J]. J Am Ceram Soc, 2017, 100: 4011–4020.
[20] ARYA S K, DANEWALIA S S, SINGH K. Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications[J]. J Mater Chem C, 2016, 4: 3328–3336.
[21] KONIJNENDIJK W L, STEVELS J M. The structure of borate glasses studied by Raman scattering[J]. J Non-Cryst Solids, 1975, 18: 307–331.
[22] JIAO Q, LI G, ZHOU D C, et al. Effect of the Glass Structure on Emission of Rare-Earth-Doped Borate Glasses[J]. J Am Ceram Soc, 2015, 98(12): 4102–4106.
[23] SWENSON J, ADAMS S. Mixed alkali effect in glasses[J]. Phys Rev Lett, 2003, 90: 155507.
[24] MILANKOVIC A M, SANTIC B, DAY D E, et al. Electrical conductivity in mixed-alkali iron phosphate glasses[J]. J Non-Cryst Solids, 2001, 283: 119–128.
[25] PAPATHANASSIOU A N. Specific feature of mixed alkali effect in the a.c. conductivity of ion-conducting glasses[J]. Mater Lett, 2005, 59: 1634–1635. 
[26] MCKITTRICK J, SHEA-ROHWER L E. Review: Down conversion materials for solid-state lighting[J]. J Am Ceram Soc, 2014, 97: 1327.
[27] SIGEL G H. Optical absorption of glasses[M]. Treatise in materials science and technology, 1977: 5–79.
[28] ELBATAL F H, HAMDY Y M, MARZOUK S Y. UV-visible and infrared absorption spectra of transition metals-doped lead phosphate glasses and the effect of gamma irradiation[J]. J Non-Cryst Solids, 2009, 355: 2439–2447.
[29] ABDELGHANY A M, ELBATAL F H, AZOOZ M A, et al. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation[J]. Spectrochim Acta A, 2012, 98: 148–155.
[30] SAMIR Y M, FATMA H E. Ultraviolet-visible absorption of gamma-irradiated transition metal ions doped in sodium metaphosphate glasses[J]. Nucl Instrum Meth B, 2006, 248: 90–102.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com