首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
微波法制备钙钛矿结构的锂离子导体La0.56Li0.33TiO3
作者:吕晓娟   刘文宇 陆威旭 刘维捷 
单位:(华北电力大学(保定)环境科学与工程学院 保定 071000) 
关键词:微波 钙钛矿 锂离子导体 晶界 
分类号:TB332
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 采用微波法制备了钙钛矿结构的锂离子导体材料La0.56Li0.33TiO3。将微波炉热处理过的粉末与管式炉热处理的粉末以不同比例混合,制备了La0.56Li0.33TiO3圆片。经过微波炉1 000 ℃热处理之后,所有的样品均结晶生成了四方相。与在管式炉中1 200 ℃烧结的样品相比,微波炉烧结得到的样品的总电导率和晶界电导率都更高。总电导率和晶界电导率的提高归因于微波烧结所产生的更适合的锂离子迁移通道以及更大的晶胞尺寸。所有样品的锂离子迁移数都接近于1,意味着所制备的样品均为离子导体。因此,微波烧结可用于在较低的温度制备锂电解质,克服了传统高温烧结的锂损失问题。

 Perovskite-type lithium ion conductors, La0.56Li0.33TiO3, were prepared via microwave sintering. Precursor powders treated in a microwave oven were mixed with powders treated in a tube furnace at different ratios to make pellets of La0.56Li0.33TiO3. All the samples were subjected to thermal treatment at 1 000 ℃ in a microwave oven, thus crystallizing into the tetragonal phase. Compared to the samples sintered at 1 200 ℃ in a tube furnace, the samples sintered in the microwave oven exhibit greater total and grain-boundary conductivities. The enhanced total and grain-boundary conductivities are attributed to the better diffusion pathways created by the microwave sintering and the larger volume cell, compared to those of the non-microwave sintered samples. The transference number of lithium ions for all the sintered samples is close to 1, indicating that pure ionic conductors can be obtained. Microwave sintering could be used to prepare lithium electrolytes at lower temperatures without suffering from the lithium loss associated with conventional high-temperature sintering.

基金项目:
河北省自然科学基金面上项目(E2018502014);中央高校基本科研业务费(2017MS138,2015ZZD3);教育部留学回国科研启动基金。
作者简介:
参考文献:

 [1] LU X, MENG F, HUANG S, et al. Enhanced ionic conductivity and chemical stability of Li1.3Al0.3Ti1.7(PO4)3 by doping of WO3[J]. Mater Lett, 2018, 230: 177–179.

[2] HAMON Y, DOUARD A, SABARY F, et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films[J]. Solid State Ionics, 2006, 177(3/4): 257–261.
[3] THOCKCHOM J S, KUMAR B. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass–ceramic[J]. J Power Sources, 2008, 185: 480–485.
[4] ZHANG P, MATSUI M, TAKEDA Y, et al. Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3[J]. Solid State Ionics, 2014, 263: 27–32.
[5] LINEVA B A, KOBYLYANSKAYA S D, KOVALENKO L L, et al. Effect of impurities on the electrical properties of the defect perovskite Li0.33La0.57TiO3[J]. Inorg Mater, 2017, 53(3): 326–332.
[6] RETTENWANDER D, REDHAMMER G, PRESISHUBER-PFLUGL F, et al. Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes[J]. Chem Mater, 2016, 28: 2384−2392.
[7] INAGUMA Y, NAKASHIM M. A rechargeable lithium air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator[J]. J Power Sources, 2013, 228: 250–255.
[8] TRONG L D, THAO T T, DINH N N. Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries[J]. Solid State Ionics, 2015, 278: 228–232.
[9] ABHILASH K P, SELVIN P C, NALINI B, et al. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries[J]. J Phy Chem. Solids, 2016, 91: 114–121.
[10] YANG T, Li Y, CHAN C K. Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning[J]. J Power Sources, 2015, 287: 164–169.
[11] KWON W J, KIM H, JUNG K N, et al. Enhanced Li+ conduction in perovskite Li3xLa2/3-x□1/3-2xTiO3 solid-electrolyte via microstructural engineering[J]. J Mater Chem A, 2017, 5(13): 6257–62.
[12] LU X, YANG D, HUANG S, et al. A Review on attempts to improve grain-boundary conductivity in perovskite lithium ion conductors[J]. J Chin Ceram Soc, 2018, 46(10): 1394–1400.
[13] GENG H X, MEI A, DONG C, et al. Investigation of structure and electrical properties of Li0.5La0.5TiO3 ceramics via microwave sintering[J]. J Alloy Compd, 2009, 481: 555–558. 
[14] GENG H X, MEI A, LIN Y H, et al. Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes[J]. Mater Sci Eng B, 2009, 164: 91–95.
[15] DENG Y, SHANG S J, MEI A, et al. The preparation and conductivity properties of Li0.5La0.5TiO3/inactive second phase composites[J]. J Alloy Compd, 2009, 472: 456–460.
[16] LU X, YANG D. Effect of sintering conditions on perovskite lithium-based ion conductor[J]. Emerg Mater Res, 2017, 6(2): 1–5.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com