首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米V2O5及其复合电极材料的电化学性能
作者:  姜奉华   徐红燕   王介强 
单位:(济南大学材料科学与工程学院 济南 250022) 
关键词:纳米复合材料 超级电容器 水热法 纳米五氧化二钒 电化学性能 
分类号:TM911
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 分别以碳球和葡萄糖为模板剂,采用水热法制备不同形貌的纳米V2O5,另外在水热过程直接加入碳纳米管(CNT)和石墨烯(Gr)原位合成CNT/Gr/V2O5纳米复合材料。结果表明: 碳球和葡萄糖均有还原剂的作用,以碳球为模板制备的试样颗粒呈多层的方玫瑰花状,其在2 mV/s下的比电容达170 F/g;以葡萄糖为模板剂制备的试样呈多孔空心球状,在2 mV/s下的比电容达324 F/g。当葡萄糖浓度为1 mol/L时,原位合成的CNT/Gr/V2O5纳米复合材料比表面积高达382.7 m2•g–1,在2 mV/s下的比电容达274 F/g,呈现出良好的电化学性能。

 V2O5 nanoparticles with different morphologies were prepared by a hydrothermal method using carbon pellets and glucose as templates, and CNT/Gr/V2O5 composites were in-situ synthesized by adding graphene (Gr) and carbon nanotubes (CNT) in the hydrothermal process. The results show that both carbon spheres and glucose both have a function of reducing agent. The sample particles prepared by using carbon spheres as a template are multi-layered rosettes with a specific capacitance of 170 F/g at a scanning rate of 2 mV/s. The samples prepared by using glucose as a template are porous and hollow microspheres with a specific capacitance of 324 F/g at a scanning rate of 2 mV/s. CNT/Gr/V2O5 composite in-situ synthesized at a glucose amount of 1 mol/L has a specific surface area of 382.7 m2/g and a specific capacitance of 274 F/g at a scanning rate of 2 mV/s, showing a good electrochemical performance.

基金项目:
山东省自然科学基金项目(ZR2012EMM005)。
作者简介:
参考文献:

 [1] YU Z, LAURENE T, JAYAN T, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energ Environ Sci, 2015, 8 (3): 702–730. 

[2] SUN J H, LI C Y, LIANG X, et al. Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose[J]. Sensors, 2016, 16(4): 584. 
[3] 耿明, 赵宏滨, 徐甲强. 锂离子电池用高性能五氧化二钒[J]. 硅酸盐学报, 2011, 39(7): 1130–1134. 
GENG Ming, ZHAO Hongbin, XU Jiaqiang. J Chin Ceram Soc, 2011, 39(7): 1130–1134. 
[4] 孟琳. 五氧化二钒纳米颗粒的制备及其电化学性能研究[D]. 硕士学位论文, 北京: 北京化工大学, 2016. 
MENG Lin. Preparation and electrochemical performance of V2O5 nanoparticles (in Chinese, dissertation). Master, Beijing: Beijing University of Chemical Technology, 2016. 
[5] MU J, WANG J X, HAO J H, et al. Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions[J]. Ceram. Int, 2015, 41(10): 12626–12632. 
[6] LIANG S Q, HU Y, NIE Z W, et al. Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries[J]. Nano Energy, 2015, 13: 58–66. 
[7] SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G. Interconnected V2O5 nanoporous network for high-performance supercapacitors[J]. Mater  Interfaces, 2012 4(9): 4484–4490. 
[8] GRACE W, HUAN Z S, YAN L C, et al. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes[J]. J Mater Chem, 2010, 20(32): 6720. 
[9] QU Q T, GUAN S Y, HOLZE R, et al. V2O5•0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution[J]. Electrochem Commun, 2009, 11(6): 1325–1328. 
[10] SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew Chem, 2004, 43: 597–601. 
[11] SANJAYA D P, BIJAL P, NOUR N, et al. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors[J]. Adv Energy Mater, 2011, 1(5): 936–945. 
[12] WU Y J, GAO G H, WU G M. Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life[J]. J Mater Chem A, 2015, 3(5): 1828–1832. 
[13] PENG T, WANG J, LIU Q, et al. Mesoporous V2O5/Ketjin black nanocomposites for all-solid-state symmetric supercapacitors[J]. Cryst Eng Comm, 2015, 17(7): 1673–1679. 
[14] YU L, ZHAO C X, CHEN W, et al. Ultrasonic synthesis and electrochemical characterization of V2O5/mesoporous carbon composites[J]. Micropor Mesopor Mater, 2009, 126: 58–64. 
[15] GUO Y, LI U, CHEN M D, et al. Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors[J]. J Power Sources, 2015, 273: 804–809. 
[16] WANG M X  Yan Q L Wang J Q, et al. Design and synthesis of carbon nanotubes/carbon fiber/reduced graphene oxide/MnO2 flexible electrode material for supercapacitors[J]. J Phys Chem Solids, 2018, 119: 29–35
[17] WANG J Q, ZENG R, DU G D, et al.  Rapid microwave-assisted synthesis of various MnO2 nanostructures and their magnetic properties[J]. Mater Chem Phys, 2015, 166: 42–48. 
[18] ZHENG D S, SUN S X, FAN W L, et al. One-step preparation of single-crystalline β-MnO2 nanotubes[J]. Chem B, 2005, 109(34): 16439–43. 
[19] ZHANG Y, ZHENG J, WANG Q, et al. Facile preparation, optical and electrochemical properties of layer-by-layer V2O5 quadrate structures[J]. Appl Surf Sci, 2016, 399: 151–159. 
[20] ZHANG X, WANG J G, LIU H, et al. Facile synthesis of V2O5 hollow spheres as advanced cathodes for high-performance lithium-ion batteries[J]. Materials, 2017, 10(1): 77. 
[21] KETAB S, DECKER B, LIAN, K. Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitors[J]. Solid State Ionics, 2016, 298: 73–79. 
[22] MENZEL J, FIC K, FRACKOWIAK E. Hybrid aqueous capacitors with iimproved energy/power performance[J]. Prog Nat Sci: Mater Int, 2015, 25(6): 642–649. 
[23] RAUDA I E, AUGUSTYN V, DUNN B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts Chem Res, 2013, 46(5): 1113–1124.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com