首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高镍层状正极材料失效机理及改性的研究进展
作者:朱晓沛1 2 张家文3 张媛娇3 黄佳佳2  智3 范丽珍1 
单位:(1. 北京科技大学新材料技术研究院 北京 100083 2. 中信国安盟固利电源技术有限公司 北京 102200  3. 天津国安盟固利新材料科技股份有限公司 天津 301802) 
关键词:锂离子电池 正极材料 高镍层状 失效机理 改性 
分类号:TM911.3
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 高镍层状正极材料Li[Ni1−xMx]O2 (其中M为Co、Mn或者Co、Al等组合,1−x≥0.6),具有高比容量、环境友好和低成本等优势,逐步成为最具应用前景的锂离子动力电池正极材料,然而,由于材料本身结构稳定性及热稳定性较差(阳离子混排、不可逆相变、界面反应、微裂纹)而引起的容量衰减等失效阻碍了其应用进程。为了应对以上高镍层状正极材料面临的挑战,综述了近年来该材料失效机理的研究进展,并从掺杂以及表面改性等方面总结了近年来国内外对该材料的研究进展。

 Ni-rich layered cathode materials Li[Ni1−xMx]O2(M=Co, Mn, or Co, Al, etc., 1−x≥0.6) are the most promising materials for cathodes of lithium ion batteries due to its high specific capacity, environmental friendliness and low cost. However, the commercialization of Ni-rich layered cathodes are hindered by its thermal and structural instability such as cation mixing, irreversible phase transitions, interfacial reactions, micro-cracks leading to capacity decay. This review summarized recent studies on the decay mechanisms. Research development of late years about the modifications of Ni-rich materials by various methods like bulk/surface doping and surface coating were represented, both at home and abroad.

基金项目:
国家自然科学基金(51532002)。
作者简介:
参考文献:

 [1] ZENG D, CABANA J, BREGER J, et al. Cation ordering in Li[NixMnxCo(1–2x)]O2-layered cathode materials: a nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study[J]. Chem Mater, 2007, 19(25): 6277–6289.

[2] KOYAMA Y, TANAKA I, ADACHI H, et al. Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1)[J]. J Power Sources, 2003, 119: 644–648.
[3] MYUNG S T, LEE M H, KOMABA S, et al. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery[J]. Electrochim Acta, 2005, 50(24): 4800–4806.
[4] ZHECHEVA E, STOYANOVA R, ALCÁNTARA R, et al. Cation order/disorder in lithium transition–metal oxides as insertion electrodes for lithium-ion batteries[J]. Pure Appl Chem, 2002, 74(10): 1885–1894.
[5] CHEN H, DAWSON J A, HARDING J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2[J]. J Mater Chem A, 2014, 2(21): 7988–7996.
[6] FU C, LI G, LUO D, et al. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance[J]. ACS Appl Mater Inter, 2014, 6(18): 15822–15831.
[7] WU F, TIAN J, SU Y, et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Appl Mater Inter, 2015, 7(14): 7702–7708.
[8] 李想, 葛武杰, 王昊, 等. 高镍系三元层状氧化物正极材料容量衰减机理的研究进展[J]. 无机材料学报, 2017, 32(2): 113–121.
LI Xiang, GE Wujie, WANG Hao, et al. J Inorg Mater (in Chinese), 2017, 32(2): 113–121.
[9] LIN F, DENNIS N, LI Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nat Energy, 2016, 1: 15004.
[10] Zheng S J, HUANG R, Yoshinari M, et al. Microstructural changes in LiNi0.8Co0.15Al0.05O2 positive electrode material during the first cycle[J]. J Electrochem Soc, 2011, 4(158): A357–A362.
[11] BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chem Mater, 2013, 25(3): 337–351.
[12] HWANG S, CHANG W, KIM S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chem Mater, 2014, 26(2): 1084–1092.
[13] YANG X Q, SUN X, MCBREEN J. Structural changes and thermal stability: In situ X-ray diffraction studies of a new cathode material LiMg0.125Ti0.125Ni0.75O2[J]. Electrochem Commun, 2000, 2(10): 733–737.
[14] POUILLERIE C, CROGUENNEC L, DELMAS C. The LixNi1− yMgyO2(y=0.05, 0.10) system: Structural modifications observed upon cycling[J]. Solid State Ionics, 2000, 132(1): 15–29.
[15] KONDO H, TAKEUCHI Y, SASAKI T, et al. Effects of Mg-substitution in Li (Ni, Co, Al)O2 positive electrode materials on the crystal structure and battery performance[J]. J Power Sources, 2007, 174(2): 1131–1136.
[16] HUANG B, LI X, WANG Z, et al. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceram Int, 2014, 40(8): 13223–13230.
[17] WOO S U, KIM C H, KIM S B, et al. Improvement of electrochemical performance of AlF3-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material[C]//The Electrochemical Society, Washington, USA, 2007 (3): 152–152.
[18] ANDERSSON A M, ABRAHAM D P, HAASCH R, et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. J Electrochem Soc, 2002, 149(10): A1358–A1369.
[19] MATSUMOTO K, KUZUO R, TAKEYA K, et al. Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO2[J]. J Power Sources, 1999, 81: 558–561.
[20] ZHUANG G V, CHEN G, SHIM J, et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power[J]. J Power Sources, 2004, 134(2): 293–297.
[21] LI X, XIE Z, LIU W, et al. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2[J]. Electrochim Acta, 2015, 174: 1122–1130.
[22] ZHU L, LIU Y, WU W, et al. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries[J]. J Mater Chem A, 2015, 3(29): 15156–15162.
[23] CHO Y, OH P, CHO J. A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer[J]. Nano lett, 2013, 13(3): 1145–1152.
[24] SHIM J, KOSTECKI R, RICHARDSON T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. J Power Sources, 2002, 112(1): 222–230.
[25] WATANABE S, KINOSHITA M, HOSOKAWA T, et al. Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. J Power Sources, 2014, 258: 210–217.
[26] MAKIMURA Y, ZHENG S, IKUHARA Y, et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy[J]. J Electrochem Soc, 2012, 159(7): A1070–A1073.
[27] ARAI H, OKADA S, SAKURAI Y, et al. Reversibility of LiNiO2 cathode[J]. Solid State Ionics, 1997, 95(3/4): 275–282.
[28] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J Power Sources, 2013, 233: 121–130.
[29] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat Mater, 2012, 11(11): 942–947.
[30] CHO Y, LEE Y S, PARK S A, et al. LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors[J]. Electrochim Acta, 2010, 56: 333–339.
[31] NURPEISSOVA A, CHOI M H, KIM J S, et al. Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries[J]. J Power Sources, 2015, 299: 425–433.
[32] LI Y, XIANG W, WU Z G, et al. Construction of homogeneously Al3+ doped Ni rich Ni–Co–Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation[J]. Electrochim Acta, 2018, 291: 84–94.
[33] KIM U, MYUNG S, YOON C S, et al. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries[J]. ACS Energy Lett, 2017, 2(8): 1848–1854.
[34] FLORIAN S, MUDIT D, DANIELA K, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. J Mater Chem A, 2016, 4, 16073–16084.
[35] SCHIPPER F, BOUZAGLO H, DIXIT M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of Nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Adv Energy Mater, 2018, 8(4): 1701682.
[36] KIM D, LIM J M, LIM Y G, et al. Design of nickel-rich layered oxides using electronic donor for redox reactions[J]. Chem Mater, 2015, 27(18): 6450–6456.
[37] CHUNG Y M, RYU S H, JU J H, et al. A surfactant-based method for carbon coating of LiNi0.8Co0.15Al0.05O2 cathode in Li ion batteries[J]. B Korean Chem Soc, 2010, 31(8): 2304–2308.
[38] JAN S S, NURGUL S, SHI X, et al. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification[J]. Electrochim Acta, 2014, 149: 86–93.
[39] CHUNG Y M, RYU K S. Surface coating and electrochemical properties of LiNi0.8Co0.15Al0.05O2 polyaniline composites as an electrode for Li-ion batteries[J]. B Korean Chem Soc, 2009, 31(8): 1733–1737.
[40] LEE Y S, SHIN W K, KANNAN A G, et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl Mater Inter, 2015, 7(25): 13944–13951.
[41] FEDORKOVA A, ORINAKOVA R, ORINAK A, et al. Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer[J]. J Solid State Electrochem.2010, 14, 2173–2178.
[42] LI W, CAMPION C, LUCHT B L, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition[J]. J Electrochem Soc, 2005, 152(7): A1361–A1365.
[43] LI S, FU X, ZHOU J, et al. An effective approach to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode by an MOF-derived coating[J]. J Mater Chem A, 2016, 4(16): 5823–5827.
[44] HUANG Y, HUANG Y, HU X. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4[J]. Electrochim Acta, 2017, 231: 294–299.
[45] SUN Y K, MYUNG S T, KIM M H, et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries[J]. J Am Chem Soc, 2005, 127(38): 13411-8.
[46] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat Mater, 2009, 8(4): 320.
[47] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat Mater, 2012, 11(11): 942–947.
[48] CHO Y, OH P, CHO J. A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer[J]. Nano Lett, 2013, 13(3): 1145–1152.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com