[1] FIORANI G, GUO W S, KLEIJ A W. Sustainable conversion of carbon dioxide: the advent of organocatalysis[J]. Green Chem, 2015, 17(3): 1375–1389.
[2] QIAO J, LIU Y, FENG HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 43(2): 631–675.
[3] LAGUNA-BERCERO M A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review[J]. J Power Sources, 2012, 203: 4–16.
[4] CHEN J, LIANG F L, YAN D, et al. Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.Co0.2Fe0.8O3–δ + Y2O3 stabilized ZrO2 composite cathodes[J]. J Power Sources, 2010, 195: 5201–5205.
[5] SHAH M, VOORHEESE P W, BARNETT S A. Time-dependent performance changes in LSCF–infiltrated SOFC cathodes: The role of nano-particle coarsening[J]. Solid State Ionics, 2011, 187(1): 64–67.
[6] WANG W, GROSS M D, VOHS J M, et al. The stability of LSF–YSZ electrodes prepared by infiltration[J]. J Electrochem Soc, 2007, 154(5): B439–B445.
[7] PER HJALMARSSON J M. Electrochemical performance and stability of nano-particulate and bi-continuous La1–xSrxCoO3 and Ce0.9Gd0.1O1.95 composite electrodes[J]. J Solid State Electrochem, 2012, 16: 2759–2766.
[8] JU J W, LIN J, WANG Y S, et al. Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone[J]. J Power Sources, 2016, 302: 298–307.
[9] 徐红梅, 张华, 李恒, 等. 纳米结构LSCF–SDC 复合阴极的制备及其氧还原机理研究[J]. 无机材料学报, 2017, 32(4): 379–385.
XU H M, ZHANG H, LI H, et al. J Inorg Mater (in Chinese), 2017, 32(4): 379–385.
[10] SHOLKLAPPER T Z, RADMILOVIC V, JACOBSON C P, et al. Synthesis and stability of a nanoparticle-infiltrated solid oxide fuel cell electrode[J]. Electrochem Solid-State Lett, 2007, 10: B74–B76.
[11] XU H M, ZHANG H, CHU A M. An investigation of oxygen reduction mechanism in nano-sized LSCF–SDC composite cathodes[J]. Int J Hydrogen Energ, 2016, 41(47): 22415–22421.
[12] LI Y F, ZHANG W Q, ZHENG Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chem Soc Rev, 2017, 46(20): 6345–6378.
[13] WU Q H, LIU M L, JAEGERMANN W. X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 [J]. Mater Lett, 2005, 59(27): 1980–1983.
[14] CAI Z, KUBICEK M, FLEIG J, et al. Chemical heterogeneities on La0.6Sr0.4O3-δ thin films-correlations to cathode surface activity and stabilty[J]. Chem Mater, 2012, 24: 1116–1127.
[15] NEWBY D, KUYYALIL J, LAVEROCK J, et al. Surface evolution of lanthanum strontium cobalt ferrite thin films at low temperatures[J]. Thin Solid Films, 2015, 589: 655–661.
[16] CRUMLIN E J, MUTORO E, LIU Z, et al. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells[J]. Energ Environ Sci, 2012, 5(3): 6081−6088.
|