首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
固体氧化物燃料电池La0.6Sr0.4Co0.2Fe0.8O3–δ–Ce0.8Sm0.2O1.9纳米结构复合阴极的性能衰减行为
作者:徐红梅1 2 3 孙凯利1  峰1 3 储爱民1 3 
单位:(1. 湖南科技大学材料科学与工程学院 湖南 湘潭 411201 2. 新能源储存与转换先进材料湖南省重点实验室 湖南 湘潭 411201 3. 高温耐磨材料湖南省重点实验室 湖南 湘潭 411201) 
关键词:固体氧化物燃料电池 阴极 极化电阻 衰减 浸渍 
分类号:TM911.4
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 利用浸渍法制备了以La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF)为催化相、Ce0.8Sm0.2O1.9(SDC)为骨架的纳米结构复合阴极,并将LSCF–SDC复合阴极在600 ℃保温500 h,随后再用HCl腐蚀,研究了LSCF–SDC纳米结构复合阴极性能衰减的机理。结果表明:LSCF–SDC纳米结构复合阴极在600 ℃保温处理500 h后,阴极的极化电阻从0.21 Ω•cm–2增加到0.25 Ω•cm–2,增加了19%,对其腐蚀处理后阴极极化电阻降为0.15 Ω•cm–2,阴极催化活性的降低主要与氧在阴极表面的吸附与解离过程有关;阴极相组成和表观形貌没有明显的变化;保温处理后Sr2+在阴极表面以SrO的形式富集。

 The La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)–Ce0.8Sm0.2O1.9 (SDC) composite cathodes were fabricated by infiltrating nano-sized LSCF coatings into the porous SDC backbones. The microstructure and electrochemical properties evolution of the composite cathode with time was investigated through the aging treatment at 600 ℃ for 500 h and the etching treatment. The polar resistance (Rp) of the cathodes measured at 600 ℃ is 0.21, 0.25 and 0.15 Ω•cm–2 for the as-prepared, the aged and the etched cathodes, respectively. The impedance spectra plots show that the evolution of Rp is mainly related to the oxygen absorption and dissociation on the cathode surface. The XRD and SEM results show that no appreciable changes about the phase composition and the apparent morphology are observed. The XPS results showed the nano-sized LSCF–SDC cathode deactivation at 600 ℃ was mainly attributed to the Sr segregation to the surface of the LSCF and the formation of SrO.

基金项目:
国家自然科学基金(51402104)。
作者简介:
参考文献:

 [1] FIORANI G, GUO W S, KLEIJ A W. Sustainable conversion of carbon dioxide: the advent of organocatalysis[J]. Green Chem, 2015, 17(3): 1375–1389. 

[2] QIAO J, LIU Y, FENG HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 43(2): 631–675. 
[3] LAGUNA-BERCERO M A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review[J]. J Power Sources, 2012, 203: 4–16. 
[4] CHEN J, LIANG F L, YAN D, et al. Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.Co0.2Fe0.8O3–δ + Y2O3 stabilized ZrO2 composite cathodes[J]. J Power Sources, 2010, 195: 5201–5205. 
[5] SHAH M, VOORHEESE P W, BARNETT S A. Time-dependent performance changes in LSCF–infiltrated SOFC cathodes: The role of nano-particle coarsening[J]. Solid State Ionics, 2011, 187(1): 64–67. 
[6] WANG W, GROSS M D, VOHS J M, et al. The stability of LSF–YSZ electrodes prepared by infiltration[J]. J Electrochem Soc, 2007, 154(5): B439–B445. 
[7] PER HJALMARSSON J M. Electrochemical performance and stability of nano-particulate and bi-continuous La1–xSrxCoO3 and Ce0.9Gd0.1O1.95 composite electrodes[J]. J Solid State Electrochem, 2012, 16: 2759–2766. 
[8] JU J W, LIN J, WANG Y S, et al. Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone[J]. J Power Sources, 2016, 302: 298–307. 
[9] 徐红梅, 张华, 李恒, 等. 纳米结构LSCF–SDC 复合阴极的制备及其氧还原机理研究[J]. 无机材料学报, 2017, 32(4): 379–385. 
XU H M, ZHANG H, LI H, et al. J Inorg Mater (in Chinese), 2017, 32(4): 379–385. 
[10] SHOLKLAPPER T Z, RADMILOVIC V, JACOBSON C P, et al. Synthesis and stability of a nanoparticle-infiltrated solid oxide fuel cell electrode[J]. Electrochem Solid-State Lett, 2007, 10: B74–B76.
[11] XU H M, ZHANG H, CHU A M. An investigation of oxygen reduction mechanism in nano-sized LSCF–SDC composite cathodes[J]. Int J Hydrogen Energ, 2016, 41(47): 22415–22421. 
[12] LI Y F, ZHANG W Q, ZHENG Y,  et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chem Soc Rev, 2017, 46(20): 6345–6378. 
[13] WU Q H, LIU M L, JAEGERMANN W. X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 [J]. Mater Lett, 2005, 59(27): 1980–1983. 
[14] CAI Z, KUBICEK M, FLEIG J, et al. Chemical heterogeneities on La0.6Sr0.4O3-δ thin films-correlations to cathode surface activity and stabilty[J]. Chem Mater, 2012, 24: 1116–1127. 
[15] NEWBY D, KUYYALIL J, LAVEROCK J, et al. Surface evolution of lanthanum strontium cobalt ferrite thin films at low temperatures[J]. Thin Solid Films, 2015, 589: 655–661. 
[16] CRUMLIN E J, MUTORO E, LIU Z, et al. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells[J]. Energ Environ Sci, 2012, 5(3): 6081−6088.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com